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Abstract17

In this paper, we discuss an extension to two popular approaches to modelling complex18

structures in ecological data: the generalized additive model (GAM) and the hierarchical19

model (HGLM). The hierarchical GAM (HGAM), allows modelling of nonlinear functional20

relationships between covariates and outcomes where the shape of the function itself varies21

between different grouping levels. We describe the theoretical connection between HGAMs,22

HGLMs and GAMs, explain how to model different assumptions about the degree of inter-23

group variability in functional response, and show how HGAMs can be readily fitted using24

existing GAM software, the mgcv package in R. We also discuss computational and statistical25

issues with fitting these models, and demonstrate how to fit HGAMs on example data. All26

code and data used to generate this paper are available at: github.com/eric-pedersen/mixed-27

effect-gams.28
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I: Introduction29

Two of the most popular and powerful modelling techniques currently in use by ecologists are30

generalized additive models (GAMs; Wood, 2017a) for modelling flexible regression functions,31

and generalized linear mixed models (“hierarchical generalized linear models” (HGLMs)32

or simply “hierarchical models”; Bolker et al., 2009; Gelman et al., 2013) for modelling33

between-group variability in regression relationships.34

At first glance, GAMs and HGLMs are very different tools used to solve different problems.35

GAMs are used to estimate smooth functional relationships between predictor variables and36

the response. HGLMs, on the other hand, are used to estimate linear relationships between37

predictor variables and response (although nonlinear relationships can also be modeled through38

quadratic terms or other transformations of the predictor variables), but impose a structure39

where predictors are organized into groups (often referred to as “blocks”) and the relationships40

between predictor and response may vary across groups. Either the slope or intercept, or41

both, may be subject to grouping. A typical example of HGLM use might be to include42

site-specific effects in a model of population counts, or to model individual level heterogeneity43

in a study with repeated observations of multiple individuals.44

However, the connection between HGLMs and GAMs is quite deep, both conceptually and45

mathematically (Verbyla et al., 1999). HGLMs and GAMs fit highly variable models by46

“pooling” parameter estimates towards one another, by penalizing squared deviations from47

some simpler model. In an HGLM, this occurs as group-level effects are pulled towards global48

effects (penalizing the squared differences between each group-level parameter estimate and49

the global effect). In a GAM, this occurs via the enforcement of a smoothness criterion on50

the variability of a functional relationship, pulling parameters towards some function that is51

assumed to be totally smooth (such as a straight line) by penalizing squared deviations from52

that totally smooth function.53

Given this connection, a natural extension to the standard GAM framework is to allow smooth54

functional relationships between predictor and response to vary between groups, but in such a55

way that the different functions are in some sense pooled toward a common shape. We often56

want to know both how functional relationships vary between groups, and if a relationship57

holds across groups. We will refer to this type of model as a hierarchical GAM, or HGAM.58

There are many potential uses for HGAMs. For example, we can use them to estimate59

how the maximum size of different fish species varies along a common temperature gradient60

(Fig. 1). Each species will typically have its own response function, but since the species61

overlap in range, they should have similar responses over at least some of the temperature62

gradient; Figure 1 shows all three species reach their largest maximum sizes in the centre of63

the temperature gradient. Estimating a separate function for each species throws away a64

lot of shared information and could result in highly noisy function estimates if there were65

only a few data points for each species. Estimating a single average relationship could result66

in a function that did not predict any specific group well. In our example, using a single67

global temperature-size relationship (Fig. 1, solid line) would miss that the three species68

have distinct temperature optima, and that the orange species is significantly smaller at all69

temperatures than the other two (Fig. 1). We prefer a hierarchical model that includes a70
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Figure 1: Hypothetical example of functional variability between different group levels. Each
dashed line indicates how the abundance for different species of fish in a community might
vary as a function of average water temperature. The orange species shows lower abundance
at all temperatures, and the red and blue species differ at which temperature they can achieve
the maximum possible size. However, all three curves are similiarly smooth and peak close to
one another relative to the entire range of tested temperatures. The solid black line represents
an ’average abundance curve’, representing the mean abundance across species in the sample.

global temperature-size curve plus species-specific curves that were penalized to be close to71

the mean function.72

This paper discusses several approaches to group-level smoothing, and corresponding trade-offs.73

We focus on fitting HGAMs with the popular mgcv package (Wood, 2011) for the R statistical74

programming language (R Core Team, 2018), which allows for a variety of HGAM model75

structures and fitting strategies. We discuss options available to the modeller and practical76

and theoretical reasons for choosing them. We demonstrate the different approaches across a77

range of case studies.78

This paper is divided into five sections. Part II is a brief review of how GAMs work and their79

relation to hierarchical models. In part III, we discuss different HGAM formulations, what80

assumptions each model makes about how information is shared between groups, and the81

different ways of specifying these models in mgcv. In part IV, we work through example82

analyses using this approach, to demonstrate the modelling process and how HGAMs can be83

incorporated into the ecologist’s quantitative toolbox. Finally, in part V, we discuss some84

of the computational and statistical issues involved in fitting HGAMs in mgcv. We have85

also included all the code needed to reproduce the results in this manuscript in supplemental86

code (online), and on the GitHub repository associated with this paper: github.com/eric-87

pedersen/mixed-effect-gams.88

II: A review of Generalized Additive Models89

The generalized linear model (GLM; McCullagh & Nelder, 1989) relates the mean of a90

response (y) to a linear combination of explanatory variables. The response is assumed to be91
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conditionally distributed according to some exponential family distribution (e.g., binomial,92

Poisson or Gamma distributions for trial, count or strictly positive real responses, respectively).93

The generalized additive model (GAM; Hastie & Tibshirani, 1990; Ruppert, Wand & Carroll,94

2003; Wood, 2017a) allows the relationships between the explanatory variables (henceforth95

covariates) and the response to be described by smooth curves (usually splines (de Boor,96

1978), but potentially other structures). In general we have models of the form:97

E (Y ) = g−1

β0 +
J∑

j=1
fj(xj)

 ,

where E(Y ) is the expected value of the response Y (with an appropriate distribution and98

link function g), fj is a smooth function of the covariate xj, β0 is an intercept term and g−1
99

is the inverse link function. Hereafter, we will refer to these smooth functions as smoothers.100

In the example equation above, there are J smoothers and each is a function of only one101

covariate, though it is possible to construct smoothers of multiple variables.102

Each smoother fj is represented by a sum of K simpler, fixed basis functions (bj,k) multiplied103

by corresponding coefficients (βj,k), which need to be estimated:104

fj(xj) =
K∑

k=1
βj,kbj,k(xj).

K, referred to as “basis size”, “basis complexity” or “basis richness”, determines the maximum105

complexity of each smoother.106

It would seem that large basis size could lead to overfitting, but this is counteracted by a107

smoothing penalty that influences basis function coefficients so as to prevent excess wiggliness108

and ensure appropriate complexity of each smoother. For each smoother, one (or more)109

penalty matrices (S), specific to the form of the basis functions, is pre- and post-multiplied by110

the parameter vector β to calculate the penalty (βT Sβ). A penalty term is then subtracted111

from the model log-likelihood L, controlling the trade-off via a smoothing parameter (λ). The112

penalized log-likelihood used to fit the model is thus:113

L− λβT Sβ

Figure 2 shows an example of how different choices of the smoothing parameter (λ) affect114

the shape of the resulting smoother. Data (points) were generated from the blue function115

and noise added to them. In Fig. 2a, λ was selected using Restricted Maximum Likelihood116

(REML) to give a good fit to the data. In Fig. 2b, λ was set to zero so the penalty has no117

effect and the function interpolates the data. Figure 2c shows when λ is set to a very large118

value, so the penalty removes all terms that have any wiggliness, giving a straight line.119

To measure the complexity of a penalized smooth terms we use the effective degrees of freedom120

(EDF), which at a maximum is the number of coefficients to be estimated in the model, minus121

any constraints. The EDF can take non-integer values and larger values indicate more wiggly122

terms (see Wood (2017a, Section 6.1.2) for further details). The number of basis functions, K123

sets a maximum for the EDF, as a smoother cannot have more than K EDF. When the EDF124
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Figure 2: Effect of different choices of smoothing parameter (λ) on the shape of the resulting
smoother (red lines). a) λ estimated using REML; b) λ set to zero (no smoothing); c) λ is set
to a very large value. The blue line in each panel is the known model used to simulate the
data.

is well below K, increasing K generally has very little effect on the shape of the function. In125

general, K should be set large enough to allow for potential variation in the smoother while126

still staying low enough to keep computation time low (see section V for more on this). In127

mgcv, the function mgcv::check.gam can be used to determine if k has been set too low.128

Random effects are also “smooths” in this framework. In this case, the penalty matrix is the129

inverse of the correlation matrix of the basis function coefficients (Kimeldorf & Wahba, 1970;130

Wood, 2017a). For a simple single-level random effect to account for variation in group means131

(intercepts) there will be one basis function for each level of the grouping variable. The basis132

function takes a value of 1 for any observation in that group and 0 for any observation not in133

the group. The penalty matrix for these terms is a g by g identity matrix, where g is the134

number of groups. This means that each group-level coefficient will be penalized in proportion135

to its squared deviation from zero. This is equivalent to how random effects are estimated in136

standard mixed effect models. The penalty term is proportional to the inverse of the variance137

of the fixed effect estimated by standard hierarchical model software (Verbyla et al., 1999).138

This connection between random effects and splines extends beyond the varying-intercept139

case. Any single-penalty basis-function representation of a smooth can be transformed so140

that it can be represented as a combination of a random effect with an associated variance,141

and possibly one or more fixed effects. See Verbyla et al. (1999) or Wood, Scheipl & Faraway142

(2013) for a more detailed discussion on the connections between these approaches.143

Basis types and penalty matrices144

The range of smoothers are useful for contrasting needs and have different associated penalty145

matrices for their basis function coefficients. In the examples in this paper, we will use three146

types of smoothers: thin plate regression splines, cyclic cubic regression splines, and random147

effects.148
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Thin plate regression splines (TPRS; Wood, 2003) are a general purpose spline basis which149

can be used for problems in any number of dimensions, provided one can assume that the150

amount of smoothing in any of the covariates is the same (so called isotropy or rotational151

invariance). TPRS, like many splines, use a penalty matrix made up of terms based on the152

the integral of the squared derivatives of basis functions across their range (see Wood (2017a)153

page 216 for details on this penalty). Models that overfit the data will tend to have large154

derivatives, so this penalization reduces wiggliness. We will refer to the order of penalized155

derivatives by m. Typically, TPRS are second-order (m = 2), meaning that the penalty is156

proportionate to the integral of the squared second derivative. However, TPRS may be of157

lower order (m = 1, penalizing squared first derivatives), or higher order (m > 2, penalizing158

squared higher order derivatives). We will see in section III how lower-order TPRS smoothers159

are useful in fitting HGAMs. Example basis functions and penalty matrix S for a m = 2160

TPRS with six basis functions for evenly spaced data are shown in Fig. 3.161

Cyclic cubic regression splines (CRS) are another smoother that penalizes the squared second162

derivative of the smooth across the function. In cyclic CRS the start and end of the smoother163

are constrained to match in value and first derivative. These are useful for fitting models with164

cyclic components such as seasonal effects. We will use these smoothers to demonstrate how165

to fit HGAMs to cyclic data.166

Smoothing penalties vs. shrinkage penalties167

Penalties can have two effects on how well a model fits: they can penalize how wiggly a given168

term is (smoothing) and they can penalize the absolute size of the function (shrinkage). The169

penalty can only affect the components of the smoother that have derivatives (the range170

space), not the other parts (the null space). For 1-dimensional TPRS (when m = 2), this171

means that there is a linear term (F5) left in the model, even when the penalty is in full force172

(as λ→∞), as shown in Fig. 3. (This is also why Fig. 2c shows a linear, rather than flat,173

fit to the data). The random effects smoother we discussed earlier is an example of a pure174

shrinkage penalty; it penalizes all deviations away from zero, no matter the pattern of those175

deviations. This will be useful later in section III, where we use random effect smoothers as176

one of the components of a HGAM.177

Interactions between smooth terms178

It is also possible to create interactions between covariates with different smoothers (or179

degrees of smoothness) assumed for each covariate, using tensor products. For instance, if180

one wanted to estimate the interacting effects of temperature and time (in seconds) on some181

outcome, it would not make sense to use a two-dimensional TPRS smoother, as that would182

assume that a one degree change in temperature would equate to a one second change in time.183

Instead, a tensor product allows us to create a new set of basis functions that allow for each184

marginal function (here temperature and time) to have its own marginal smoothness penalty.185

A different basis can be used in each marginal smooth, as required for the data at hand.186

There are two approaches used in mgcv for generating tensor products. The first approach187

(Wood, 2006a) essentially creates an interaction of each pair of basis functions for each188
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Figure 3: a) Examples of the basis functions associated with a six basis function thin plate
regression spline (TPRS, m=2), calculated for data, x, spread evenly between x = 0 and
x = 1. Each line represents a single basis function. b) The smoothing penalty matrix for the
thin plate smoother. Red entries indicate positive values and blue indicate negative values.
For example, functions F3 and F4 would have the greatest proportionate effect on the total
penalty (as they have the largest values on the diagonal), whereas function F5 and F6 would
not contribute to the wiggliness penalty at all (all the values in the 5th and 6th row and
column of the penalty matrix are zero). This means these functions are in the null space
of the penalty matrix, and are treated as completely smooth. c) An example of how the
basis functions add up to create a single smooth function. Thin coloured lines represent each
basis function multiplied by a coefficient, and the solid black line is the sum of those basis
functions.
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marginal term, and a penalty for each marginal term that penalizes the average wiggliness in189

that term; in mgcv, these are created using the te() function. The second approach (Wood,190

Scheipl & Faraway, 2013) separates each penalty into penalized (range space) and unpenalized191

components (null space; components that don’t have derivatives, such as intercept and linear192

terms in a one-dimensional cubic spline). This approach creates new basis functions and193

penalties for all pair-wise combinations of penalized and unpenalized components between all194

pairs of marginal bases; in mgcv, these are created using the t2() function. The advantage195

of the first method is that it requires fewer smoothing parameters, so is faster to estimate in196

most cases. The advantage of the second method is that the tensor products created this way197

only have a single penalty associated with each marginal basis (unlike the te() approach,198

where each penalty applies to all basis functions), so it can be fitted using standard mixed199

effect software such as lme4 (Bates et al., 2015).200

Comparison to hierarchical linear models201

Hierarchical generalized linear models (Gelman, 2006; HGLMs; also referred to as generalized202

linear mixed effect models, multilevel models etc; e.g., Bolker et al., 2009) are an extension of203

regression modelling that allows the inclusion of terms in the model that account for structure204

in the data — the structure is usually of the form of a nesting of the observations. For205

example, in an empirical study, individuals may be nested within sample sites, sites are nested206

within forests, and forests within provinces. The depth of the nesting is limited by the fitting207

procedure and number of parameters to estimate.208

HGLMs are a highly flexible way to think about grouping in ecological data; the groupings209

used in models often refer to the spatial or temporal scale of the data (McMahon & Diez,210

2007) though can be based on any useful grouping.211

We would like to be able to think about the groupings in our data in a similar way, even when212

the covariates in our model are related to the response in a smooth way. The next section213

investigates the extension of the smoothers we showed above to the case where observations214

are grouped and we model group-level smoothers.215

III: What are hierarchical GAMs?216

What do we mean by hierarchical smoothers?217

In this section, we will describe how to model inter-group variability using smooth curves218

and how to fit these models using mgcv. All models were fitted using mgcv version 1.8-26219

(Wood, 2011). Model structure is key in this framework, so we start with three model choices:220

1. Should each group have its own smoother, or will a common smoother suffice?221

2. Do all of the group-specific smoothers have the same wiggliness, or should each group222

have its own smoothing parameter?223

3. Will the smoothers for each group have a similar shape to one another — a shared224

global smoother?225

These three choices result in five possible models (Fig. 4):226
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1. A single common smoother for all observations; We will refer to this as model G, as it227

only has a Global smoother.228

2. A global smoother plus group-level smoothers that have the same wiggliness. We will229

refer to this as model GS (for Global smoother with individual effects that have a230

Shared penalty)231

3. A global smoother plus group-level smoothers with differing wiggliness. We will refer232

to this as model GI (for Global smoother with individual effects that have Individual233

penalties)234

4. Group-specific smoothers without a global smoother, but with all smoothers having the235

same wiggliness. We will refer to this as model S.236

5. Group-specific smoothers with different wiggliness. We will refer to this as model I.237

It is important to note that “similar wiggliness” and “similar shape” are two distinct concepts;238

functions can have very similar wiggliness but very different shapes. Wiggliness measures239

how quickly a function changes across its range, and it is easy to construct two functions that240

differ in shape but have the same wiggliness. For this paper, we consider two functions to have241

similar shape if the average squared distance between the functions is small (assuming the242

functions have been scaled to have a mean value of zero across their ranges). This definition is243

somewhat restricted; for instance, a cyclic function would not be considered to have the same244

shape as a phase-shifted version of the same function, nor would two normal distributions245

with the same mean but different standard deviations. The benefit of this definition of shape,246

however, is that it is straightforward to translate into penalties akin to those described in247

section II. Figure 4, model S illustrates the case where models have different shapes. Similarly,248

two curves could have very similar overall shape, but differ in their wiggliness. For instance,249

one function could be equal to another plus a high-frequency oscillation term. Figure 4, model250

GI illustrates this.251

We will discuss the trade-offs between different models and guidelines about when each of252

these models is appropriate in section V. The remainder of this section will focus on how to253

specify each of these five models using mgcv.254

Coding hierarchical GAMs in R255

Each of the models in Figure 4 can be coded straightforwardly in mgcv. We will use two256

example datasets to demonstrate how to code these models (see the supplemental code to257

reproduce these examples):258

A. The CO2 dataset, available in R via the datasets package. This data is from an experi-259

mental study by Potvin, Lechowicz & Tardif (1990) of CO2 uptake in grasses under varying260

concentrations of CO2, measuring how concentration-uptake functions varied between plants261

from two locations (Mississippi and Quebec) and two temperature treatments (chilled and262

warm). Twelve plants were used and CO2 uptake measured at 7 CO2 concentrations for each263

plant (Fig. 5a). Here we will focus on how to use HGAMs to estimate inter-plant variation in264

functional responses. This data set has been modified from the default version available with265

R, to recode the Plant variable as an unordered factor Plant_uo1.266

1Note that mgcv requires that grouping or categorical variables be coded as factors in R; it will raise an
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Figure 4: Alternate types of functional variation f(x) that can be fitted with HGAMs. The
dashed line indicates the average function value for all groups, and each solid line indicates
the functional value at a given predictor value for an individual group level. The null model
(of no functional relationship between the covariate and outcome), is not explicitly assigned a
model name.
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Figure 5: Example data sets used throughout section III. a) Grass CO2 uptake versus CO2
concentration for 12 individual plants. Color and linetype included to distinguish individual
plant trends. b) Simulated data set of bird migration, with point size corresponding to weekly
counts of 6 species along a latitudinal gradient (zeros excluded for clarity).

B. Data generated from a hypothetical study of bird movement along a migration corridor,267

sampled throughout the year (see supplemental code). This dataset consists of simulated268

sample records of numbers of observed locations of 100 tagged individuals each from six269

species of bird, at ten locations along a latitudinal gradient, with one observation taken every270

four weeks. Counts were simulated randomly for each species in each location and week by271

creating a species-specific migration curve that gave the probability of finding an individual272

of a given species in a given location, then simulated the distribution of individuals across273

sites using a multinomial distribution, and subsampling that using a binomial distribution274

to simulate observation error (i.e. not every bird present at a location would be detected).275

The data set (bird_move) consists of the variables count, latitude, week and species (Fig.276

5b). This example allows us to demonstrate how to fit these models with interactions and277

with non-normal (count) data. The true model used to generate this data was model GS : a278

single global function plus species-specific deviations around that global function.279

error message if passed data coded as characters. It is also important to know whether the factor is coded as
ordered or unordered (see ?factor for more details on this). This matters when fitting group-level smoothers
using the by= argument (as is used for fitting models GI and I, shown below). If the factor is unordered,
mgcv will set up a model with one smoother for each grouping level. If the factor is ordered, mgcv will
set any basis functions for the first grouping level to zero. In model GI the ungrouped smoother will then
correspond to the first grouping level, rather than the average functional response, and the group-specific
smoothers will correspond to deviations from the first group. In model I, using an ordered factor will result in
the first group not having a smoother associated with it at all.
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Throughout the examples we use Restricted Maximum Likelihood (REML) to estimate280

model coefficients and smoothing parameters. We strongly recommend using either REML281

or marginal likelihood (ML) rather than the default generalized cross-validation (GCV)282

criteria when fitting GAMs, for the reasons outlined in Wood (2011). In each case some data283

processing and manipulation has been done to obtain the graphics and results below. See284

supplemental code for details on data processing steps. To illustrate plots, we will be using285

the draw() function from the gratia package. This package was developed by one of the286

authors (Simpson, 2018) as a set of tools to extend plotting and analysis of mgcv models.287

While mgcv has plotting capabilities (through plot() methods), gratia expands these by288

creating ggplot2 objects (Wickham, 2016) that can be more easily extended and modified.289

A single common (global) smoother for all observations (Model G)290

We start with the simplest model from the framework and include many details here to ensure291

that readers are comfortable with the terminology and R functions.292

For our CO2 data set, we will model loge(uptake) as a function of two smoothers: a TPRS293

of loge-concentration, and a random effect for Plant_uo to model plant-specific intercepts.294

Mathematically:295

loge(uptakei) = f(loge(conci)) + ζPlant_uo + εi

where ζPlant_uo is the random effect for plant and εi is a Gaussian error term. Here we assume296

that loge(uptakei) is normally distributed.297

In R we can write our model as:298

CO2_modG <- gam(log(uptake) ~ s(log(conc), k=5, bs="tp") +
s(Plant_uo, k=12, bs="re"),

data=CO2, method="REML", family="gaussian")

This is a common GAM structure, with a single smooth term for each variable. Specifying299

the model is similar to specifying a GLM in R via glm(), with the addition of s() terms to300

include one-dimensional or isotropic multidimensional smoothers. The first argument to s()301

are the terms to be smoothed, the type of smoother to be used for the term is specified by302

the bs argument, and the maximum number of basis functions is specified by k. There are303

different defaults in mgcv for K, depending on the type of smoother chosen; here we use a304

TPRS smoother (bs="tp") for the concentration smoother, and set k=5 as there are only 7305

separate values of concentration measured, so the default k=10 (for TPRS) would be too high;306

further, setting k=5 saves on computational time (see section V). The random effect smoother307

(bs="re") that we used for the Plant_uo factor always has a k value equal to the number308

of levels in the grouping variable (here, 12). We specified k=12 just to make this connection309

apparent.310

Figure 6 illustrates the output of gratia’s draw() function for CO2_modG: the panel labelled311

s(log(conc)) shows the estimated smoother for concentration, and the panel labelled312
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Figure 6: gratia plotting output for model G applied to the CO2 dataset. s(log(conc)):
the smoother of loge concentration. Plant_uo: a quantile-quantile plot of the random effects
against Gaussian quantiles, used to check the appropriateness of the normal random effect
assumption.

Plant_uo shows a quantile-quantile plot of the estimated random effects vs. Gaussian quantiles,313

which can be used to check our model.314

Looking at the effects by term is useful, but we are often interested in fitted values or315

predictions from our models. Using the built in prediction functions with mgcv, we can316

estimate what the fitted function (and uncertainty around it) should look like for each level,317

as shown in Figure 7 (see supplemental code for more details on how to generate these318

predictions).319

Examining these plots, we see that while functional responses among plants are similar,320

some patterns are not captured by this model. For instance, for plant Qc2 the model clearly321

underestimates CO2 uptake. A model including individual differences in functional responses322

may better explain variation.323

For our bird example, we model the count of birds as a function of location and time, including324

their interaction. For this we structure the model as:325

E(counti) = exp(f(weeki, latitudei))

where we assume that counti ∼ Poisson. For the smooth term, f , we employ a tensor product326

of latitude and week, using a TPRS for the marginal latitude effect, and a cyclic CRS for327

the marginal week effect to account for the cyclic nature of weekly effects (we expect week 1328

and week 52 to have very similar values)2, both splines had basis complexity (k) of 10.329

2The cyclic smoother requires that the start and end points of the cyclic variable are specified, via the
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Figure 7: Predicted uptake function (± 2 s.e.) for each plant, based on model G (a single
global function for uptake plus a individual-level random effect intercept). Model predictions
are for log-uptake, but are transformed here to show the fitted function on the original scale
of the data.
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Figure 8: Plot illustrating the average log-abundance of all bird species at each latitude for
each week, with red colours indicating more individuals and blue colours fewer.

bird_modG <- gam(count ~ te(week, latitude, bs=c("cc", "tp"), k=c(10, 10)),
data=bird_move, method="REML", family="poisson",
knots=list(week=c(0, 52)))

Figure 8 shows the default draw(bird_modG) plot for the week-by-latitude smoother. It330

shows birds starting at low latitudes in the winter then migrating to high latitudes from the331

10th to 20th week, staying there for 15-20 weeks, then migrating back. However, the plot332

also indicates a large amount of variability in the timing of migration. The source of this333

variability is apparent when we look at the timing of migration of each species (cf. Fig. 5b).334

All six species in Fig. 5b show relatively precise migration patterns, but they differ in the335

timing of when they leave their winter grounds and the amount of time they spend at their336

summer grounds. Averaging over all of this variation results in a relatively imprecise (diffuse)337

estimate of migration timing (Fig. 8), and viewing species-specific plots of observed versus338

predicted values (Fig. 9), it is apparent that the model fits some of the species better than339

others. This model could potentially be improved by adding inter-group variation in migration340

knots argument; the smoother will have the exact same value at the start and end. In the absence of a
specified start and end point, gam will assume the end points are the smallest and largest observed levels of
the covariate (see mgcv::smooth.construct.cc.smooth.spec for more details). Note that in bird_modG we
have specified week 0 and week 52 as the endpoints, as the first (week 1) and last weeks (week 52) of the year
should not have exactly the same expected value.
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Figure 9: Observed counts by species versus predicted counts from bird_modG (1-1 line added
as reference). If our model fitted well we would expect that all species should show similiar
patterns of dispersion around the 1-1 line (and as we are assuming the data is Poisson, the
variance around the mean should equal the mean). Instead we see that variance around the
predicted value is much higher for species 1 and 6.

timing. The rest of this section will focus on how to model this type of variation.341

A single common smoother plus group-level smoothers that have the same wig-342

gliness (model GS)343

Model GS is a close analogue to a GLMM with varying slopes: all groups have similar344

functional responses, but inter-group variation in responses is allowed. This approach works345

by allowing each grouping level to have its own functional response, but penalizing functions346

that are too far from the average.347

This can be coded in mgcv by explicitly specifying one term for the global smoother (as in348

model G above) then adding a second smooth term specifying the group-level smooth terms,349

using a penalty term that tends to draw these group-level smoothers towards zero. mgcv350

provides an explicit basis type to do this, the factor-smoother interaction or "fs" basis (see351

?mgcv::factor.smooth.interaction for details). This smoother creates a copy of each set352

of basis functions for each level of the grouping variable, but only estimates one smoothing353

parameter for all groups. To ensure that all parts of the smoother can be shrunk towards354
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Figure 10: Global function (s(log(conc))) and group-specific deviations from the global
function (s(log(conc),Plant_uo)) for CO2_modGS

zero effect, each component of the penalty null space is given its own penalty3.355

We modify the previous CO2 model to incorporate group-level smoothers as follows:356

loge(uptakei) = f(loge(conci)) + fPlant_uoi
(loge(conci)) + εi

where fPlant_uoi
(loge(conci)) is the smoother for concentration for the given plant. In R we357

then have:358

CO2_modGS <- gam(log(uptake) ~ s(log(conc), k=5, m=2) +
s(log(conc), Plant_uo, k=5, bs="fs", m=2),

data=CO2, method="REML")

Figure 10 shows the fitted smoothers for CO2_modGS. The plots of group-specific smoothers359

indicate that plants differ not only in average log-uptake (which would correspond to each360

plant having a straight line at different levels for the group-level smoother), but differ slightly361

in the shape of their functional responses. Figure 11 shows how the global and group-specific362

smoothers combine to predict uptake rates for individual plants. We see that, unlike in the363

single global smoother case above, none of the curves deviate from the data systematically.364

The factor-smoother interaction-based approach mentioned above does not work for higher-365

dimensional tensor product smoothers (fs() does still work for higher dimensional isotropic366

smoothers). Instead, the group-specific term can be specified with a tensor product of the367

continuous smoothers and a random effect for the grouping parameter4. e.g.:368

3As part of the penalty construction, each group will also have its own intercept (part of the penalized null
space), so there is no need to add a separate term for group specific intercepts as we did in model G.

4As mentioned in section II, these terms can be specified either with te() or t2() terms. Using t2 as
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Figure 11: Predicted uptake values (lines) versus observed uptake for each plant, based on
model GS.
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Figure 12: a) Predicted migration paths for each species based on bird_modGS, with lighter
colors corresponding to higher predicted counts. b) Observed counts versus predictions from
bird_modGS.

y ~ te(x1, x2, bs="tp", m=2) +
t2(x1, x2, fac, bs=c("tp","tp","re"), m=2, full=TRUE)

We illustrate this approach below on the bird migration data.369

bird_modGS <- gam(count ~ te(week, latitude, bs=c("cc", "tp"),
k=c(10, 10), m=2) +

t2(week, latitude, species, bs=c("cc", "tp", "re"),
k=c(10, 10, 6), m=2, full=TRUE),

data=bird_move, method="REML", family="poisson",
knots=list(week=c(0, 52)))

Model GS is able to effectively capture the observed patterns of interspecific variation in370

migration behaviour (Fig. 12a). It shows a much tighter fit between observed and predicted371

values, as well as less evidence of over-dispersion in some species compared to model G (Fig.372

12b).373

above (with full=TRUE) is essentially a multivariate equivalent of the factor-smoother interaction; it requires
more smooth terms than te(), but can be fit using other mixed effects software such as lme4, which is
useful when fitting models with a large number of group levels (see Section V on computational issues for
details). We have generally found that t2(full=TRUE) is the best approach for multidimensional GS models
when the goal is to accurately estimate the global smoother in the presence of group-level smoothers; other
approaches (using te()) tend to result in the global smoother being overly penalized toward the flat function,
and the bulk of the variance being assigned to the group-level smoother. We discuss this further in section V,
“Estimation issues when fitting both global and group-level smoothers”.
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A single common smoother plus group-level smoothers with differing wiggliness374

(Model GI )375

This model class is very similar to model GS, but we now allow each group-specific smoother376

to have its own smoothing parameter and hence its own level of wiggliness. This increases377

the computational cost of the model (as there are more smoothing parameters to estimate),378

and means that the only information shared between groups is through the global smoother,379

the common error term, and through the random effect for group-level intercepts (if used).380

This is useful if different groups differ substantially in how wiggly they are.381

Fitting a separate smoother (with its own penalties) can be done in mgcv by using the by382

argument in the s() and te() (and related) functions. Therefore, we can code the formula383

for this model as:384

y ~ s(x, bs="tp") + s(x, by=fac, m=1, bs="tp") + s(fac, bs="re")

Note two major differences here from how model GS was specified:385

1. We explicitly include a random effect for the intercept (the bs="re" term), as group-386

specific intercepts are not incorporated into factor by variable smoothers (as would be387

the case with a factor smoother or a tensor product random effect).388

2. We specify m=1 instead of m=2 for the group-level smoothers, which means the marginal389

TPRS basis for this term will penalize the squared 1st derivative of the function, rather390

than the second derivative. This, also, reduces co-linearity between the global smoother391

and the group-specific terms which occasionally leads to high uncertainty around the392

global smoother (see section V for more details). TPRS with m=1 have a more restricted393

null space than m=2 smoothers, so should not be as collinear with the global smoother394

(Wieling et al., 2016; Baayen et al., 2018). We have observed that this is much more of395

an issue when fitting model GI compared to model GS.396

We modify the CO2 model to follow this approach like so:397

CO2_modGI <- gam(log(uptake) ~ s(log(conc), k=5, m=2, bs="tp") +
s(log(conc), by=Plant_uo, k=5, m=1, bs="tp") +
s(Plant_uo, bs="re", k=12),

data=CO2, method="REML")

Figure 13 shows a subsample of the group-specific smoothers from this model. It is apparent398

from this that some groups (e.g. Qc1) have very similar shapes to the global smoother399

(differing only in intercept), others do differ from the global trend, with higher uptake at400

low concentrations and lower uptake at higher concentrations (e.g. Mc1, Qn1), or the reverse401

pattern (e.g. Mn1).402

Using model GI with higher-dimensional data is also straightforward; by terms work just as403

well in tensor-product smoothers as they do with isotropic smoothers. We can see this with404

our bird model:405

bird_modGI <- gam(count ~ species +
te(week, latitude, bs=c("cc", "tp"), k=c(10, 10), m=2) +
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Figure 13: Functional relationships for the CO2 data estimated for model GI. s(log(conc)):
the global smoother; Plant_uo: species-specific random effect intercepts. The remaining plots
are a selected subset of the plant-specific smoothers, indicating how the functional response
of that plant differs from the global smoother.
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te(week, latitude, by=species, bs= c("cc", "tp"),
k=c(10, 10), m=1),

data=bird_move, method="REML", family="poisson",
knots=list(week=c(0, 52)))

As above, we have set (m=1) for the latitude marginal effect to avoid issues of collinearity406

between the global and group-level smoother. Note that switching m=1 to m=2 does not have407

any effect on the marginal basis for week, where we are using a cyclic smoother instead of a408

TPRS.409

The fitted model for bird_modGI is visually indistinguishable from bird_modGS (Fig. 12) so410

we do not illustrate it here.411

Models without global smoothers (models S and I )412

We can modify the above models to exclude the global term (which is generally faster;413

see section V). When we do not model the global term, we are allowing each group to be414

differently shaped without restriction. Though there may be some similarities in the shape of415

the functions, these models’ underlying assumption is that group-level smooth terms do not416

share or deviate from a common form.417

Model S:418

Model S (shared smoothers) is model GS without the global smoother term; this type of419

model takes the form: y~s(x, fac, bs="fs") or y~te(x1, x2, fac, bs=c("tp", "tp",420

"re") in mgcv. This model assumes all groups have the same smoothness, but that the421

individual shapes of the smooth terms are not related. Here we do not plot these models; the422

model plots are very similar to the plots for model GS. This will not always be the case. If423

in a study there are very few data points in each grouping level (relative to the strength of424

the functional relationship of interest), estimates from model S will typically be much more425

variable than from model GS ; there is no way for the model to share information on function426

shape between grouping levels without the global smoother. See section V on computational427

issues for more on how to choose between different models.428

CO2_modS <- gam(log(uptake) ~ s(log(conc), Plant_uo, k=5, bs="fs", m=2),
data=CO2, method="REML")

bird_modS <- gam(count ~ t2(week, latitude, species, bs=c("cc", "tp", "re"),
k=c(10, 10, 6), m=2, full=TRUE),

data=bird_move, method="REML", family="poisson",
knots=list(week=c(0, 52)))

Model I :429

Model I is model GI without the first term: y~fac+s(x, by=fac) or y~fac+te(x1,x2,430

by=fac) (as above, plots are very similar to model GI ).431
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CO2_modI <- gam(log(uptake) ~ s(log(conc), by=Plant_uo, k=5, bs="tp", m=2) +
s(Plant_uo, bs="re", k=12),

data=CO2, method="REML")

bird_modI <- gam(count ~ species + te(week, latitude, by=species,
bs=c("cc", "tp"), k=c(10, 10), m=2),

data=bird_move, method="REML", family="poisson",
knots=list(week=c(0, 52)))

Comparing different HGAM specifications432

These models can be compared using standard model comparison tools. Model GS and433

model GI will generally be nested in model G (depending on how each model is specified) so434

comparisons using generalized likelihood ratio tests (GLRTs) may be used to test if group-level435

smoothers are necessary (if fit using method="ML"). However, we do not currently recommend436

this method. There is not sufficient theory on how accurate parametric p-values are for437

comparing these models; there is uncertainty about what degrees of freedom to assign to438

models with varying smoothness, and slightly different model specifications may not result in439

nested models. (See Wood (2017a) Section 6.12.4 and ?mgcv::anova.gam for more discussion440

on using GLRTs to compare GAMs.)441

Comparing models based on AIC is a more robust approach to comparing the different442

model structures. There is well-developed theory of how to include effects of penalization443

and smoothing parameter uncertainty when estimating the model complexity penalty for444

AIC (Wood, Pya & Säfken, 2016). We demonstrate this approach in Table 1. Using AIC,445

there is strong support for including among-group functional variability for both the CO2446

dataset and the bird_move dataset (compare models G versus all other models). For the447

CO2 dataset (Table 1A), there is relatively strong evidence that there is more inter-group448

variability in smoothness than model GS allows, and weaker evidence that model S or I449

(separate smoothers for all plants) show the best fit.450

For the bird_move dataset (Table 1B), model GS (global smoother plus group-level smoothers451

with a shared penalty) gives the best fit for all models including a global smooth (which452

is good as we simulated the data from a model with this structure!). However, model S453

(without a global term) still fits this data better than model GS based on AIC. This highlights454

an issue with AIC for selecting between models with and without a global smooth: as it is455

possible to fully recreate the global term by just allowing each group-level smoother to have a456

similar shape to one another (that is, the global term is totally concurve with the group-level457

smoothers; see section V) model selection criteria such as AIC may indicate that the extra458

parameters required to fit the global smoother are unnecessary5.459

5If it is important for a given study to determine if there is evidence for a significant global smooth effect,
we recommend fitting model GS or GI, including the argument select = TRUE in the gam function. This
has the effect of adding an extra penalty to each smooth term, that penalizes functions in the null space of
the penalty matrices for each smooth. By doing this, it is possible for mgcv to penalize all model terms to a
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Table 1: AIC table comparing model fits for example datasets
Model df AIC deltaAIC
A. CO2 models
CO2_modG 17 -119 101
CO2_modGS 39 -199 22
CO2_modGI 42 -216 4
CO2_modS 53 -219 1
CO2_modI 56 -220 0

B. bird_move models
bird_modG 51 3374 1823
bird_modGS 140 1554 4
bird_modGI 208 1682 132
bird_modS 127 1550 0
bird_modI 200 1634 84

Given this issue with selecting global terms, we strongly recommend not selecting models460

based purely on AIC. Instead, model selection should be based on expert subject knowledge461

about the system, computational time, and most importantly, the inferential goals of the462

study. Table 1A indicates that models S and I (which do not have a global function) fit the463

CO2 data better than models with a global function, and that model S fits the bird_move data464

better than model GS. However, it is the shape of the global function that we are actually465

interested in here, as models S and I cannot be used to predict the concentration-uptake466

relationship for plants that are not part of the training set, or the average migration path for467

birds. The same consideration holds when choosing between model GS and GI : while model468

GI fits the CO2 data better than model GS (as measured by AIC), model GS can be used to469

simulate functional variation for unobserved group levels, whereas this is not possible within470

the framework of model GI. The next section works through two examples to show how to471

choose between different models, and section V discusses these and other model fitting issues472

in more depth.473

It also is important to recognize that AIC, like any function of the data, is a random variable474

and should be expected to have some sampling error (Forster & Sober, 2011). In cases when475

the goal is to select the model that has the best predictive ability, we recommend holding476

some fraction of the data out prior to the analysis and comparing how well different models477

fit that data, or using k-fold cross validation as a more accurate guide to how well a given478

model may predict out of sample. Predictive accuracy may also be substantially improved by479

averaging over multiple models (Dormann et al., 2018).480

zero effect, in effect doing variable selection (Marra & Wood, 2011). When select=TRUE, the significance of
the global term can be found by looking at the significance of the term in summary.gam(model). Note that
this can significantly increase the amount of time it takes to fit a model for data sets with a large number of
penalty terms (such as model GI when the number of groups is high).
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IV: Examples481

We now demonstrate two worked examples on one data set to highlight how to use HGAMs482

in practice, and to illustrate how to fit, test, and visualize each model. We will demonstrate483

how to use these models to fit community data, to show when using a global trend may or484

may not be justified, and to illustrate how to use these models to fit seasonal time series.485

For these examples, data are from a long-term study in seasonal dynamics of zooplankton,486

collected by the Richard Lathrop. The data were collected from a chain of lakes in Wisconsin487

(Mendota, Monona, Kegnonsa, and Waubesa) approximately bi-weekly from 1976 to 1994.488

They consist of samples of the zooplankton communities, taken from the deepest point of489

each lake via vertical tow. The data are provided by the Wisconsin Department of Natural490

Resources and their collection and processing are fully described in Lathrop (2000).491

Zooplankton in temperate lakes often undergo seasonal cycles, where the abundance of each492

species fluctuates up and down across the course of the year, with each species typically493

showing a distinct pattern of seasonal cycles. The inferential aims of these examples are to (i)494

estimate variability in seasonality among species in the community in a single lake (Mendota),495

and (ii) estimate among-lake variability for the most abundant taxon in the sample (Daphnia496

mendotae) across the four lakes. To enable evaluation of out-of-sample performance, we split497

the data into testing and training sets. As there are multiple years of data, we used data from498

the even years to fit (train) models, and the odd years to test the fit.499

Each record consists of counts of a given zooplankton taxon taken from a subsample from a500

single vertical net tow, which was then scaled to account for the relative volume of subsample501

versus the whole net sample and the area of the net tow, giving population density per m2.502

Values are rounded to the nearest 1000. Observed densities span four orders of magnitude.503

We modelled density using a Gamma distribution with a log-link. For any net tow sample504

where a given taxon was not observed, we set that taxon’s density to 1000 (the minimum505

possible sample size)6. To evaluate how well each model fits new data (not used to fit the506

model), we calculated the total deviance of the out-of-sample data that we had previously held507

out. The deviance is equal to two times the sum of the difference between the log-likelihood508

of the out-of-sample data (as predicted by each model) and a saturated model, that has one509

predictor for each data point, all multiplied by the scale parameter for the family of interest.510

It can be interpreted similarly to the residual sum of squares for a simple linear regression511

(Wood, 2017a, p. 109).512

First, we demonstrate how to model community-level variability in seasonality, by regressing513

scaled density on day of year with species-specific curves. As we are not interested in average514

seasonal dynamics, we focus on models S and I (if we wanted to estimate the seasonal dynamics515

for rarer species, adding a global smooth term might be useful, so we could borrow information516

from the more common species). As the data are seasonal, we use cyclic smoothers as the517

6A more appropriate model for this data would be to assume that density is left censored, where 1000
is treated as a threshold which the data may lie below, but it is not possible to measure lower than this.
However, mgcv does not currently have a left-censored family. The brms package, for Bayesian model fitting,
can fit a left-censored Gamma distribution, so it would be possible to fit this model using that software. We
discuss using HGAMs in brms in section V.
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basis for seasonal dynamics. Therefore we need to specify start and end points for our cycles518

using the knots argument to gam(), as well as specify this smoother type as a factor-smooth519

interaction term using the xt argument (the xt argument is how any extra information that520

a smoother might need is supplied; see ?mgcv::s for more information). Note that we also521

include a random effect smoother for both taxon and taxon:year_f, where year_f is year522

transformed into a factor variable. This deals with the fact that average zooplankton densities523

can show large year-to-year variation. The argument drop.unused.levels=FALSE is also524

included so the gam function does not drop the year factor levels corresponding to those in525

the held-out test data set.526

Model S:527

zoo_comm_modS <- gam(density_adj ~ s(taxon, year_f, bs="re") +
s(day, taxon, bs="fs", k=10, xt=list(bs="cc")),

data=zoo_train, knots=list(day=c(0, 365)),
family=Gamma(link="log"), method="REML",
drop.unused.levels=FALSE)

Model I :528

# Note that s(taxon, bs="re") has to be explicitly included here, as the
# day by taxon smoother does not include an intercept
zoo_comm_modI <- gam(density_adj ~ s(day, by=taxon, k=10, bs="cc") +

s(taxon, bs="re") + s(taxon, year_f, bs="re"),
data=zoo_train, knots=list(day=c(0, 365)),
family=Gamma(link="log"), method="REML",
drop.unused.levels=FALSE)

At this stage of the analysis (prior to model comparisons), it is useful to determine if any529

of the fitted models adequately describe patterns in the data (i.e. goodness of fit testing).530

mgcv’s gam.check() facilitates this model-checking. This function creates a set of standard531

diagnostic plots: a QQ plot of the deviance residuals (see Wood (2017a)) compared to532

their theoretical expectation for the chosen family, a plot of response versus fitted values, a533

histogram of residuals, and a plot of residuals versus fitted values. It also conducts a test for534

each smooth term to determine if the number of degrees of freedom (k) for each smooth is535

adequate (see ?mgcv::gam.check for details on how that test works). The code for checking536

model S and I for the community zooplankton model is:537

gam.check(zoo_comm_modS)
gam.check(zoo_comm_modI)

We have plotted QQ plots and fitted-versus residual plots for model I (fitted versus response538

plots are generally less useful for non-normally distributed data as it can be difficult to539

visually assess if the observed data shows more heteroskedasticity than expected). The results540

for model S are virtually indistinguishable to the naked eye. We have also used alternate541
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Figure 14: Diagnostic plots for model I fitted to zooplankton community data in Lake
Mendota. a) QQ-plot of residuals (black). Red line indicates the 1-1 line and grey bands
correspond to the expected 95% CI for the QQ plot, assuming the distribution is correct. b)
Deviance residuals versus fitted values (on the link scale).

QQ-plotting code from the gratia package (Simpson, 2018), using the qq_plot() function, as542

this function creates a ggplot2 object that are easier to customize than the base plots from543

gam.check(). The code for generating these plots is in the supplemental material. These544

plots (Fig. 14) indicate that the Gamma distribution seems to fit the observed data well545

except at low values, where the deviance residuals are larger than predicted by the theoretical546

quantiles (Fig. 14a). There also does not seem to be a pattern in the residual versus fitted547

values (Fig. 14b), except for a line of residuals at the lowest values, which correspond to all548

of those observations where a given taxon was absent from the sample.549

The k.check() test (Table 2) shows that the default maximum degrees of freedom for the550

smoothers used in model I are sufficient for all species, as the effective degrees of freedom551

(EDF) for all estimated smoothers are well below their maximum possible value (k’), and the552

p-value for the observed k-index (which measures pattern in the residuals) is not significant.553

In this table, each row corresponds to a single smooth term, k’ corresponds to the number554

of basis functions used for that smoother in the fitted model (smaller than the specified k555

in the model itself, as some basis functions are automatically dropped to ensure the model556

is identifiable). The column EDF is the estimated Effective Degrees of Freedom for that557

smoother, the k-index is a measure of the remaining pattern in the residuals, and the p-value558

is calculated based on the distribution of the k-index after randomizing the order of the559

residuals. Note that there is no p-value for the random effects smoothers s(taxon) and560

s(taxon,year_f) as the p-value is calculated from simulation-based tests for autocorrelation561

of the residuals. As taxon and year_f are treated as simple random effects with no natural562

ordering, there is no meaningful way of checking for autocorrelation.563

Differences between models S (shared smoothness between taxa) and I (different smoothness564

for each taxa) seem to be driven by the low seasonality of L. siciloides relative to the other565
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Table 2: Results from running k.check() on zoo_comm_modI. Each row corresponds to a single
model term. The notation for term names uses mgcv syntax. For instance, "s(day):taxonC.
sphaericus" refers to the the smoother for day for the taxon C. sphaericus.

Model term k’ EDF k-index p-value
s(day):taxonC. sphaericus 8 4.78 0.89 0.44
s(day):taxonCalanoid copepods 8 6.66 0.89 0.46
s(day):taxonCyclopoid copepods 8 5.31 0.89 0.46
s(day):taxonD. mendotae 8 6.95 0.89 0.46
s(day):taxonD. thomasi 8 6.57 0.89 0.45
s(day):taxonK. cochlearis 8 5.92 0.89 0.47
s(day):taxonL. siciloides 8 0.52 0.89 0.46
s(day):taxonM. edax 8 4.69 0.89 0.43
s(taxon) 8 6.26 NA NA
s(taxon,year_f) 152 51.73 NA NA

species, and how this is captured by the more flexible model I (Fig. 15). Still, both models566

show very similar fits to the training data. This implies that the added complexity of different567

penalties for each species (model I ) is unnecessary here, which is consistent with the fact568

that model S has a lower AIC (4667) than model I (4677), and that model S is somewhat569

better at predicting out-of-sample fits for all taxa than model I (Table 3). Both models show570

significant predictive improvement compared to the intercept-only model for all species except571

K. cochlearis (Table 3). This may be driven by changing timing of the spring bloom for this572

species between training and out-of-sample years (Fig. 15).573

Next, we look at how to fit inter-lake variability in dynamics for just Daphnia mendotae. Here,574

we will compare models G, GS, and GI to determine if a single global function is appropriate575

for all four lakes, or if we can more effectively model variation between lakes with a shared576

smoother and lake-specific smoothers.577

Model G:578

zoo_daph_modG <- gam(density_adj ~ s(day, bs="cc", k=10) + s(lake, bs="re") +
s(lake, year_f, bs="re"),

data=daphnia_train, knots=list(day=c(0, 365)),
family=Gamma(link="log"), method="REML",
drop.unused.levels=FALSE)

Model GS:579

zoo_daph_modGS <- gam(density_adj ~ s(day, bs="cc", k=10) +
s(day, lake, k=10, bs="fs", xt=list(bs="cc")) +
s(lake, year_f, bs="re"),
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Figure 15: Species-specific seasonal dynamics for the eight zooplankon species tracked in
Lake Mendota. Black points indicate individual plankton observations in the training data,
and grey points are observations in held-out years used for model validation. Lines indicate
predicted average values for model S (green) and model I (red). Ribbons indicate ± 2
standard errors around the mean.
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Table 3: Out-of-sample predictive ability for model S and I applied to the zooplankton
community dataset. Deviance values represent the total deviance of model predictions from
observations for out-of-sample data. ’Intercept only’ results are for a null model with only
taxon-level random effect intercepts included.

Total deviance of out-of-sample data
Taxon Intercept only Model S Model I
C. sphaericus 715 482 495
Calanoid copepods 346 220 223
Cyclopoid copepods 569 381 386
D. mendotae 353 264 268
D. thomasi 486 333 337
K. cochlearis 486 2260 2340
L. siciloides 132 116 126
M. edax 270 138 139

data=daphnia_train, knots=list(day=c(0, 365)),
family=Gamma(link="log"), method="REML",
drop.unused.levels=FALSE)

Model GI :580

zoo_daph_modGI <- gam(density_adj~s(day, bs="cc", k=10) + s(lake, bs="re") +
s(day, by=lake, k=10, bs="cc") +
s(lake, year_f, bs="re"),

data=daphnia_train, knots=list(day=c(0, 365)),
family=Gamma(link ="log"), method="REML",
drop.unused.levels=FALSE)

Diagnostic plots from gam.check() indicate that there are no substantial patterns comparing581

residuals to fitted values (not shown), and QQ-plots are similar to those from the zooplankton582

community models; the residuals for all three models closely correspond to the expected583

(Gamma) distribution, except at small values, where the observed residuals are generally584

larger than expected (Fig. 16). As with the community data, this is likely an artifact of the585

assumption we made of assigning zero observations a value of 1000 (the lowest possible value),586

imposing an artificial lower bound on the observed counts. There was also some evidence587

that the largest observed values were smaller than expected given the theoretical distribution588

, but these fell within the 95% CI for expected deviations from the 1-1 line (Fig. 16).589

AIC values indicate that both model GS (1093.71) and GI (1085.7) are better fits than model590

G (1097.62), with model GI fitting somewhat better than model GS.7 There does not seem to591

7When comparing models via AIC, we use the standard rule of thumb from Burnham & Anderson (1998),
where models that differ by 2 units or less from the lowest AIC model have substantial support, and those
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Figure 16: QQ-plots for model G (a) , GS (b), and GI (c) fitted to Daphnia data across
the four lakes. Red line indicates the 1-1 line, black points are observed model residuals, and
grey bands correspond to the expected 95% CI for the QQ plot, assuming the distribution is
correct.

be a large amount of inter-lake variability (the effective degrees of freedom per lake are low in592

models GS & GI ). Plots for all three models (Fig. 17) show that Mendota, Monona, and593

Kegonsa lakes are very close to the average and to one another for both models, but Waubesa594

shows evidence of a more pronounced spring bloom and lower winter abundances.595

Model GI is able to predict as well or better than model G or GS for all lakes (Table 4), indi-596

cating that allowing for inter-lake variation in seasonal dynamics improved model prediction.597

All three models predicted dynamics in Lake Mendota and Lake Menona significantly better598

than the intercept-only model (Table 4). None of the models did well in terms of predicting599

Lake Waubesa dynamics out-of-sample compared to a simple model with only a lake-specific600

intercept and no intra-annual variability, but this was due to the influence of a single large601

outlier in the out-of-sample data that occurred after the spring bloom, at day 243 (Fig. 17;602

note that the y-axis is log-scaled). However, baring a more detailed investigation into the603

cause of this large value, we cannot arbitrarily exclude this outlier from the goodness-of-fit604

analysis; it may be due either to measurement error or a true high late-season Daphnia density605

that our model was not able to predict.606

differing by more than 4 units have less support.
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Figure 17: Raw data (points) and fitted models (lines) for D. mendota data. Black points
indicate individual plankton observations in the training data, and grey points are observations
in held-out years used for model validation. Green line: model G (no inter-lake variation
in dynamics); orange line: model GS (interlake variation with similar smoothness); purple
line: model GI (varying smoothness among lakes). Shaded bands are drawn at ± 2 standard
errors around each model.
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Table 4: Out-of-sample predictive ability for model G, GS, and GI applied to the D. mendotae
dataset. Deviance values represent the total deviance of model predictions from observations
for out-of-sample data. ’Intercept only’ results are for a null model with only lake-level
random effect intercepts included.

Total deviance of out-of-sample data
Lake Intercept only Model G Model GS Model GI
Kegonsa 96 92 89 86
Mendota 352 258 257 257
Menona 348 300 294 290
Waubesa 113 176 164 157

V: Computational and statistical issues when fitting607

HGAMs608

Which of the five model formulations (Fig. 4) should you choose for a given data set? There609

are two major trade-offs to consider. The first is the bias-variance trade-off: more complex610

models can account for more fluctuations in the data, but also tend to give more variable611

predictions, and can overfit. The second trade-off is model complexity versus computational612

cost: more complex models can include more potential sources of variation and give more613

information about a given data set, but will generally take more time and computational614

resources to fit and debug. We discuss both of these trade-offs in this section. We also discuss615

how to extend the HGAM framework to fit more complex models.616

Bias-variance trade-offs617

The bias-variance trade-off is a fundamental concept in statistics. When trying to estimate618

any relationship (in the case of GAMs, a smooth relationship between predictors and data)619

bias measures how far, on average, an estimate is from the true value. The variance of an620

estimator corresponds to how much that estimator would fluctuate if applied to multiple621

different samples of the same size taken from the same population. These two properties tend622

to be traded off when fitting models. For instance, rather than estimating a population mean623

from data, we could simply use a predetermined fixed value regardless of the observed data8.624

This estimate would have no variance (as it is always the same regardless of what the data625

look like) but would have high bias unless the true population mean happened to equal the626

fixed value we chose. Penalization is useful because using a penalty term slightly increases627

model bias, but can substantially decrease variance (Efron & Morris, 1977).628

In GAMs, the bias-variance trade-off is managed by the terms of the penalty matrix, and629

equivalently random effect variances in HGLMs. Larger penalties correspond to lower variance,630

as the estimated function is unable to wiggle a great deal, but also correspond to higher bias631

unless the true function is close to the null space for a given smoother (e.g., a straight line632

8While this example may seem contrived, this is exactly what happens when we assume a given regression
coefficient is equal to zero (and thus exclude it from a model).
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for TPRS with 2nd derivative penalties, or zero for a random effect). The computational633

machinery used by mgcv to fit smooth terms is designed to find penalty terms that best634

trade-off bias for variance to find a smoother that can effectively predict new data.635

The bias-variance trade-off comes into play with HGAMs when choosing whether to fit636

separate penalties for each group level or assign a common penalty for all group levels (i.e.,637

deciding between models GS & GI or models S & I ). If the functional relationships we are638

trying to estimate for different group levels actually vary in how wiggly they are, setting639

the penalty for all group-level smoothers equal (models GS & S) will either lead to overly640

variable estimates for the least variable group levels, over-smoothed (biased) estimates for the641

most wiggly terms, or a mixture of these two, depending on the fitting criteria.642

We developed a simple numerical experiment to determine whether mgcv’s fitting criteria643

tend to set estimated smoothness penalties high or low in the presence of among-group644

variability in smoothness when fitting model GS or S HGAMs. We simulated data from four645

different groups, with all groups having the same levels of the covariate x, equally spaced646

across the range from 0 to 2π. For each group, the true function relating x to the response,647

y, was a cosine wave, but the frequency varied from 0.5 (equal to half a cycle across the648

range of x) to 4 (corresponding to 4 full cycles across the range). As all four sine waves649

spanned the whole range from -1 to +1 across the range of x, and as they were all integer or650

half-integer frequencies, the signal for all groups had the same variance across the range of x,651

approximately equal to 0.5. Therefore, the true function for all groups had the same strength652

of signal; all that varied between groups was how rapidly the signal fluctuated. We added653

normally distributed error to all y-values, with three different noise levels, given by standard654

deviations of 0.5, 1, and 2. These correspond to signal-to-noise ratios (i.e. variance of the655

cosine curve divided by variance of the noise) of 2, 0.5, and 0.125. For each noise level we656

created 25 replicate data sets to illustrate the amount of simulation-to-simulation variation in657

model fit. We then fit both model S (where all curves were assumed to be equally smooth)658

and model I (with varying smoothness) to each replicate for each noise level, using REML659

criteria to estimate penalties.660

A sample of the fits for each group for three of the replicates for each model are shown in661

Fig. 18a, with model S in red and model I in blue. Figure 18b illustrates how well each662

model fared across the range of replicates at accurately estimating the true smoothness of the663

highest frequency terms as measured by the squared second derivative of the smooth fit versus664

that of the true function, with the distance to the black one-to-one line indicating the degree665

to which the estimated function for each group over- or under-estimated the smoothness of666

the true signal. In general, under low noise conditions (Fig. 18, signal-to-noise ratio of 2),667

model S tended to overfit the smoothest, lowest-frequency, groups, while accurately fitting668

the highest frequency groups. Under moderate signal-to-noise ratios, model S tended to669

over-penalize high-frequency groups and under-penalize low frequency groups, and in the670

lowest signal-to-noise ratio tested (0.125), model S tended to penalize all groups towards very671

smooth functions (Fig. 18b). Curves estimated by model I, on the other hand, tended to672

accurately capture the true wiggliness of the function across the whole range of frequencies673

and noises, except for the lowest-frequency groups, and the highest frequency groups it the674

presence of high noise; in both cases, model I tended to over-smooth (Fig. 18b).675
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This implies that assuming equal smoothness will result in underestimating the true smoothness676

of low-variability terms in cases of high signal-to-noise, and overestimating the true smoothness677

of high-frequency terms in low signal-to-noise data sets. If this is a potential issue, we678

recommend fitting both models S and I and using standard model evaluation criteria (e.g.,679

AIC) or out-of-sample predictive accuracy (as in Section IV) to determine if there is evidence680

for among-group variability in smoothness. However, it may be the case that there are too681

few data points per group to estimate separate smoothness levels, in which case model GS or682

model S may still be the better option even in the face of varying smoothness.683

The ideal case would be to assume that among-group penalties follow their own distribution684

(estimated from the data), to allow variation in smoothness while still getting the benefit685

of pooling information on smoothness between groups. This is currently not implemented686

in mgcv. It is possible to set up this type of varying penalty model in flexible Bayesian687

modelling software such as Stan (see below for a discussion of how to fit HGAMs using688

these tools), where inter-group variation in smoothing penalties could be modelled with a689

hierarchical prior. However, to the best of our knowledge, how to fit this type of model has690

not been well studied in either the Bayesian or frequentist literature.691

It may seem there is also a bias-variance trade-off between choosing to use a single global692

smoother (model G) or a global smoother plus group-level terms (models GS and GI ). In693

model G, all the data is used to estimate a single smooth term, and thus should have lower694

variance than models GS and GI, but higher bias for any given group in the presence of695

inter-group functional variability. However, in practice, this trade-off will be handled via696

penalization; if there are no average differences between functional responses, mgcv will697

penalize the group-specific functions toward zero, and thus toward the global model. The698

choice between using model G versus models GS and GI should generally be driven by699

computational costs. Model G is typically much faster to fit than models GS and GI, even in700

the absence of among-group differences. If there is no need to estimate inter-group variability,701

model G will typically be more efficient.702

A similar issue exists when choosing between models GS and GI and models S and I. If all703

group levels have very different functional shapes, the global term will get penalized toward704

zero in models GS and GI, so they will reduce to models S and I. The choice to include a705

global term should be made based on scientific considerations (is the global term of interest?)706

and computational considerations.707

Complexity-computation trade-offs708

The more flexible a model is, the larger an effective parameter space any fitting software709

has to search. It can be surprisingly easy to use massive computational resources trying to710

fit models to even small datasets. While we typically want to select models based on their711

fit and our inferential goals, computing resources can often act as an effective upper bound712

on model complexity. For a given data set, assuming a fixed family and link function, the713

time taken to estimate an HGAM will depend (roughly) on four factors: (i) the number of714

coefficients to be estimated (and thus the number of basis functions chosen), (ii) the number715

of smoothing parameters to be estimated, (iii) whether the model needs to estimate both a716
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Figure 18: a) Illustration of bias that can arise from assuming equal smoothness for all group
levels (model S, red lines) versus allowing for intergroup variation in smoothness (model I,
blue lines) across a range of signal-to-noise ratios, holding the group-level signals constant.
The true function for each group level is shown in black. b) Distribution of wiggliness (as
measured by the integral of the squared 2nd derivative) of the estimated function for each
replicate for each group level for model S (red) and model I (blue), versus the true wiggliness
of the function for that grouping level, with the black line indicating the one-to-one line.
Points below (above) the black line indicate that a given model estimated the curve as less
(more) wiggly than the true curve used to generate the data. Estimated wiggliness less than
10−3 was truncated for visual clarity, as mgcv estimated effectively straight lines for several
groups, corresponding to a wiggliness of 0, which would not appear on a log-scaled plot.
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global smoother and group-level smoothers, and (iv) the algorithm and fitting criteria used to717

estimate parameters.718

The most straightforward factor that will affect the amount of computational resources is719

the number of parameters in the model. Adding group-level smoothers (moving from model720

G to the other models) means that there will be more regression parameters to estimate.721

For a dataset with g different groups and n data points, fitting a model with just a global722

smoother, y~s(x,k=k) will require k coefficients, and takes O(nk2) operations to evaluate.723

Fitting the same data using a group-level smoother (model S, y~s(x,fac,bs="fs",k=k))724

will require O(nk2g2) operations to evaluate. In effect, adding a group-level smoother will725

increase computational cost by an order of the number of groups squared. The effect of this726

is visible in the examples we fit in section III. Table 5 compares the relative time it takes to727

compute model G versus the other models.728

One way to deal with this issue would be to reduce the number of basis functions used when729

fitting group-level smoothers when the number of groups is large, limiting the flexibility of730

the model. It can also make sense to use more computationally-efficient basis functions when731

fitting large data sets, such as P-splines (Wood, 2017b) or cubic splines. TPRSs entail greater732

computational costs (Wood, 2017a).733

Including a global smoother (models GS and GI compared to models S and I ) will not734

generally substantially affect the number of coefficients that need to be estimated (Table 5).735

Adding a global term will add at most k extra terms. It can be substantially less than that,736

as mgcv drops basis functions from co-linear smoothers to ensure that the model matrix is737

full rank.738

Adding additional smoothing parameters (moving from model GS to GI, or moving from739

model S to I ) is more costly than increasing the number of coefficients to estimate, as740

estimating smoothing parameters is computationally intensive (Wood, 2011). This means741

that models GS and S will generally be substantially faster than GI and I when the number742

of groups is large, as models GI and I fit a separate set of penalties for each group level. The743

effect of this is visible in comparing the time it takes to fit model GS to model GI (which has744

a smoother for each group) or models S and I for the CO2 example data (Table 5). Note that745

this will not hold in all cases. For instance, model GI and I take less time to fit the bird746

movement data than models GS or S do (Table 5B).747

Alternative formulations: bam(), gamm(), and gamm4()748

When fitting models with large numbers of groups, it is often possible to speed up computation749

substantially by using one of the alternative fitting routines available through mgcv.750

The first option is the function bam(), which requires the fewest changes to existing code751

written using the gam() function. bam() is designed to improve performance when fitting752

large data sets via two mechanisms. First, it saves on memory needed to compute a given753

model by using a random subset of the data to calculate the basis functions. It then blocks754

the data and updates model fit within each block (Wood, Goude & Shaw, 2015). While this755

is primarily designed to reduce memory usage, it can also substantially reduce computation756
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Table 5: Relative computational time and model complexity for different HGAM formulations
of the two example data sets from section III. All times are scaled relative to the length of
time model G takes to fit to that data set. The number of coefficients measures the total
number of model parameters (including intercepts). The number of smoothers is the total
number of unique penalty values estimated by the model.

Number of terms
Model Relative Time Coefficients Penalties
A. CO2 data
G 1 17 2
GS 7 65 3
GI 17 65 14
S 5 61 3
I 16 61 13

B. Bird movement data
G 1 90 2
GS 470 540 8
GI 390 624 14
S 830 541 6
I 73 535 12

time. Second, when using bam()’s default method="fREML" (“Fast REML”) method, you can757

use the discrete=TRUE option: this first bins continuous covariates into a smaller number of758

discrete values before estimating the model, substantially reducing the amount of computation759

needed (Wood et al. (2017); see ?mgcv::bam for more details). Setting up the five model types760

(Fig. 4) in bam() uses the same code as we have previously covered; the only difference is that761

you use the bam() instead of gam() function, and have the additional option of discretizing762

your covariates.763

bam() has a larger computational overhead than gam(); for small numbers of groups it can764

be slower than gam() (Fig. 19). As the number of groups increases, computational time for765

bam() increases more slowly than for gam(); in our simulation tests, when the number of766

groups is greater than 16, bam() can be upward of an order of magnitude faster (Fig. 19).767

Note that bam() can be somewhat less computationally stable when estimating these models768

(i.e., less likely to converge). While base bam() (not fit using discrete=TRUE) is slower than769

the other approaches shown in Fig. 19, that does not imply that bam() is a worse choice in770

general; it is designed to avoid memory limitations when working with big data rather than771

explicitly speeding up model fitting. The bam() functions would likely show much better772

relative performance when the number of individuals per group were large (in the hundreds773

to thousands, compared to the 20 individuals per group used in Fig. 19).774

The second option is to fit models using one of two dedicated mixed effect model estimation775

packages, nlme and lme4. The mgcv package includes the function gamm(), which uses the776

nlme package to estimate the GAM, automatically handling the transformation of smooth777

38



terms into random effects (and back into basis function representations for plotting and other778

statistical analyses). The gamm4() function, in the separate gamm4 package, uses lme4 in779

a similar way. Using gamm() or gamm4() to fit models rather than gam() can substantially780

speed up computation when the number of groups is large, as both nlme and lme4 take781

advantage of the sparse structure of the random effects, where most basis functions will be782

zero for most groups (i.e., any group-specific basis function will only take a non-zero value for783

observations in that group level). As with bam(), gamm() and gamm4() are generally slower784

than gam() for fitting HGAMs when the number of group levels is small (in our simulations,785

<8 group levels), however they do show substantial speed improvements even with a moderate786

number of groups, and were as fast as or faster to calculate than bam() for all numbers of787

grouping levels we tested (Fig. 19)9.788

Both gamm() and gamm4() require a few changes to model code. First, there are a few789

limitations on how you are able to specify the different model types (Fig. 4) in both790

frameworks. Factor-smoother interaction (bs="fs") basis setup works in both gamm() and791

gamm4(). However, as the nlme package does not support crossed random effects, it is792

not possible to have two factor-smoother interaction terms for the same grouping variable793

in gamm() models (e.g., y~s(x1, grp, bs="fs")+s(x2, grp, bs="fs"). These type of794

crossed random effects are allowed in gamm4. The use of te() terms are not possible in795

gamm4, due to issues with how random effects are specified in the lme4 package, making it796

impossible to code models where multiple penalties apply to a single basis function. Instead,797

for multidimensional group-level smoothers, the alternate function t2() needs to be used to798

generate these terms, as it creates tensor products with only a single penalty for each basis799

function (see ?mgcv::t2 for details on these smoothers, and Wood, Scheipl & Faraway (2013)800

for the theoretical basis behind this type of tensor product). For instance, model GS for the801

bird movement data we discussed in section III would need to be coded as:802

bird_modS <- gamm4(count ~ t2(week, latitude, species, k=c(10, 10, 6), m=2,
bs=c("cc", "tp", "re")),

data=bird_move, family="poisson")

These packages also do not support the same range of families for the dependent variable;803

gamm() only supports non-Gaussian families by using a fitting method called penalized quasi-804

likelihood (PQL) that is slower and not as numerically stable as the methods used in gam(),805

bam(), and gamm4(). Non-Gaussian families are well supported by lme4 (and thus gamm4),806

but can only fit them using marginal likelihood (ML) rather than REML, so may tend to807

over-smooth relative to gam() using REML estimation. Further, neither gamm() nor gamm4()808

supports several of the extended families available through mgcv, such as zero-inflated,809

negative binomial, or ordered categorical and multinomial distributions.810

9It is also possible to speed up both gam() and bam() by using multiple processors in parallel, whereas
this is not currently possible for gamm() and gamm4(). For large numbers of grouping levels, this should speed
up computation as well, at the cost of using more memory. However, computation time will likely not decline
linearly with the number of cores used, since not all model fitting sets are parallelizable, and performance of
cores can vary. As parallel processing can be complicated and dependent on the type of computer you are
using to configure, we do not go into how to use these methods here. The help file ?mgcv::mgcv.parallel
explains how to use parallel computations for gam() and bam() in detail.
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Figure 19: Elapsed time to estimate the same model using each of the four approaches. Each
data set was generated with 20 observations per group using a unimodal global function and
random group-specific functions consisting of an intercept, a quadratic term, and logistic trend
for each group. Observation error was normally distributed. Models were fit using model
2: y s(x, k=10, bs="cp") + s(x,fac, k=10, bs="fs", xt=list(bs="cp"), m=1). All
models were run on a single core.
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Estimation issues when fitting both global and group-level811

smoothers812

When fitting models with separate global and group-level smoothers (models GS and GI ),813

one issue to be aware of is concurvity between the global smoother and group-level terms.814

Concurvity measures how well one smooth term can be approximated by some combination815

of the other smooth terms in the model (see ?mgcv::concurvity for details). For models GS816

and GI, the global term is either entirely or almost entirely10 concurved with the group-level817

smoothers. This is because, in the absence of the global smooth term, it would be possible to818

recreate that average effect by shifting all the group-level smoothers so they were centered819

around the global mean.820

In practical terms, this has the consequence of increasing uncertainty around the global mean821

relative to a model with only a global smoother. In some cases, it can result in the estimated822

global smoother being close to flat, even in simulated examples with a known strong global823

effect. This concurvity issue may also increase the time it takes to fit these models (for824

example, compare the time it takes to fit models GI and I in Table 5). These models can825

still be estimated because of penalty terms; all of the methods we have discussed for fitting826

model GS (factor-smoother terms or random effect tensor products) automatically create a827

penalty for the null space of the group-level terms, so that only the global term has its own828

unpenalized null space. Both the REML and ML criteria work to balance penalties between829

nested smooth terms (this is why nested random effects can be fitted). We have observed830

that mgcv still occasionally finds solutions with simulated data where the global term is831

over-smoothed.832

To avoid this issue, we recommend both careful choice of basis and relative degrees of freedom833

of global and group-level terms. In the examples in section III, we used smoothers with an834

unpenalized null space for the global smoother and ones with no null space for the group-level835

terms. When using TPRS this can be achieved with splines with a lower order of derivative836

penalized in the group-level smoothers than the global smoothers, as lower-order TPRS837

have fewer basis functions in the null space. For example, we used m=2 (penalizing squared838

second derivatives) for the global smoother, and m=1 (penalizing squared first derivatives)839

for group-level smoothers in models GS and GI. Another option is to specify the maximum840

degrees of freedom (k) for the group-level smoother either substantially higher or lower than841

the global smoother; this is in effect an approximate way to specify a prior belief in the842

relative smoothness of the global versus group-level functions. If the group-level term is set843

to have greater k compared to the global term, this encodes the assumption that the global844

function should not be very wiggly, but group-level deviations from that smooth might vary845

from that, and vice versa if k is set lower for group-level terms than for the global smoother.846

10There is an important caveat here. When fitting GS models using tensor products in mgcv, the global
and group-level terms will not be entirely concurve because mgcv will automatically drop basis functions
from the group-level smoother to ensure that these terms are not perfectly concurve. That is, so that no basis
function in the global term could be formed from a linear combination of group-level basis functions (see
?mgcv::gam.side for how terms to be dropped are selected). Group-level terms fit using bs="fs" smoothers
will not have any basis functions dropped, as mgcv disables checking for side-constraints for these smoothers
(since all basis functions are fully penalized for this type of smoother, in principle concurvity should not be an
issue; see ?mgcv::smooth.construct.fs.smooth.spec for details).

41



As noted above, interpreting the shape of global terms and group-wise deviations separately847

for GS models fit using tensor-product group-level terms is complicated by the fact that848

mgcv will drop some basis-functions from the group-level terms to prevent perfect concurvity.849

For tensor-product smoothers, mgcv will generally drop ≤ K terms from the group-level850

smoother, where K is the number of basis functions in the global smoother. The total number851

of terms dropped will depend on the smoothers used for the global and group-level terms.852

This means that some groups will have a different range of potential deviations from the global853

smoother than others. This has the effect of also somewhat altering the shape of the global854

smooth relative to what it would be based on model G (the average curve through all the855

data); this will be a larger issue when the number of basis functions in the global smooth and856

the number of group levels are small. We have tested the effect of this issue on our simulated857

bird_move data set and did not find that it lead to substantial bias in estimating the shape858

of the global smoother, relative to the amount of bias inherent in any smooth estimation859

method11 (Figure 20). As noted in section III, we found that t2() tensor product smoothers860

with full penalties (full = TRUE in the t2() function) for group-level smoothers showed the861

best performance at recreating the true global function from our simulated bird_move data862

set, compared to other possible types of tensor product. Using te() tensor products for the863

group-level terms lead to the global smoother being heavily smoothed relative to the actual864

average function, used to simulate the data (Figure 20). However, more work on when these865

models accurately reconstruct global effects is still needed.866

There is currently no way to disable dropping side constraints for these terms in mgcv. In867

cases where accurately estimating the global smoother or group-level deviations is essential,868

we recommend either fitting model G, GS using factor-smooth group-level terms (bs="fs",869

which can also be used to model multi-dimensional isotropic group-level smoothers), or model870

GI. Alternatively, there is specialized functional regression software such as the pffr function871

in the refund package (Scheipl, Gertheiss & Greven, 2016), which does not impose these872

side constraints; instead the package uses a modified type of tensor-product to ensure that873

group-level terms sum to zero at each level of the predictor (Scheipl, Gertheiss & Greven,874

2016). See below for more information on functional regression.875

A brief foray into the land of Bayes876

As mentioned in section II, the penalty matrix can be interpreted as the prior precision877

(inverse prior covariance) matrix for the model parameters β. Intuitively, the basis functions878

and penalty are an informal prior on how we’d like our model term to behave. REML gives879

an empirical Bayes estimate of the smooth model (Laird & Ware, 1982), where terms in880

the null space of the smoother have improper, flat priors (i.e., any value for these terms are881

11It is also important to consider here that the concept of a “global function” is a bit fuzzy itself, and
there are many possible ways to define what a global function is (as we discussed in section III). The global
function being fit in all of these models is actually an average function, and the shape of it will depend on the
sampling structure of any given study. In our view, the global function fitted in these models should generally
be viewed as a useful summary of an average trend across a wide range of groups, and would only represent
an actual average relationship if the grouping levels were drawn at random from some underlying population
and if there was scientific reason to believe that individual groups should differ from the mean only via some
additive function.
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Figure 20: Average global function used for simulating bird_move data set (a) compared to
the fitted global function for a GS model estimated with either a te() smoother (b) or a
t2() smoother with full=TRUE (c) for group-level terms. Both group-level smoothers used
the same model specification as in section III except for the type of tensor product used.
Colors indicate the value of the linear predictor of bird density at each location in each week.

considered equally likely). Any terms in the range space are treated as having a multivariate882

normal prior, and the smoothing parameters are treated as having an improper flat prior883

(see Wood (2017a) Section 5.8 for more details on this connection). The posterior covariance884

matrix (Wood, 2006b) for model parameters can be extracted from any fitted gam() or bam()885

model with vcov(model) (this is conditional on the estimated smoothing parameters unless886

the option unconditional=TRUE is specified). Given the normal posterior for the estimates887

of β, we can sample from a multivariate normal with mean β̂ and posterior covariance matrix.888

Such samples can be used to estimate uncertainty in functions of the predictors. Viewing889

our GAM as Bayesian is a somewhat unavoidable consequence of the equivalence of random890

effects and splines — if we think that there is some true smoother that we wish to estimate,891

we must take a Bayesian view of our random effects (splines) as we do not think that the892

true smoother changes each time we collect data (Wood, 2017a, Section 5.8). The standard893

confidence intervals used in mgcv are in fact Bayesian posterior credible intervals, which894

happen to have good frequentist across-the-function properties (Wood, 2006b; Marra & Wood,895

2012). The newest version of mgcv as of this writing (v. 1.8-28) also includes an experimental896

implementation of Integrated Nested Laplace Approximation (INLA) to calculate full posterior897

distributions for GAMs, via the ginla function (Wood, 2019).898

This also means that HGAMs can be included as components in a more complex fully Bayesian899

model. The mgcv package includes a function jagam() that can take a specified model900

formula and automatically convert it into code for the JAGS (or BUGS) Bayesian statistical901

packages, which can be adapted by the user to their own needs.902
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Similarly, the brms package (Bürkner, 2017), which can fit complex statistical models using903

the Bayesian software Stan (Carpenter et al., 2017) allows for the inclusion of mgcv-style904

smooth terms as part of the model specification. The brms package does not currently905

support te() tensor products, but does support factor-smooth interactions and t2()-style906

tensor products, which means all of the models fitted in this paper can be fitted by brms.907

Finally, the bamlss package (Umlauf, Klein & Zeileis, 2018) can fit complex GAMs using908

a number of computational backends, including JAGS and BayesX, using mgcv syntax for909

model specification.910

Beyond HGAMs: functional regression911

The HGAMs we have discussed are actually a type of functional regression, which is an912

extension of standard regression models to cases where the outcome variable yi and/or the913

predictor variables xi for a given outcome are functions, rather than single variables (Ramsay914

& Silverman, 2005). HGAMs as we have described them are a form of function-on-scalar915

regression (Ramsay & Silverman, 2005; Reiss, Huang & Mennes, 2010), where we are trying916

to estimate a smooth function that varies between grouping levels. Here the “scalar” refers to917

the grouping level, and the function is the smooth term that varies between levels; in contrast,918

a standard GAM is a type of scalar-on-scalar regression, as the goal is to use a set of single919

values (scalars) to estimate each (scalar) response.920

We have deliberately focused our paper on these simpler classes of functional regression model,921

and chosen to use the term HGAM rather than functional regression, as we believe that this922

more clearly connects these models to modelling approaches already familiar to ecologists.923

Further, we consider the unit of analysis to still be individual observations, as compared924

to functional regression where the unit of analysis is whole functions. For instance, we are925

interested in applications such as species distribution modelling, where the presence of a926

given species may be predicted from a sum of several species-specific functions of different927

environmental variables.928

However, there is an extensive literature dedicated to the estimation of more complex functional929

regression models for any interested reader (see Morris (2015) and Greven & Scheipl (2017)930

for a good introduction and overview of more recent work in this field). The refund package931

(Greven & Scheipl, 2017) uses the statistical machinery of mgcv to fit these models, and932

should be usable by anyone familiar with mgcv modelling syntax. Functional regression is933

also a major area of study in Bayesian statistics (e.g., Kaufman, Sain & others (2010)).934

Conclusion935

HGAMs are a powerful tool to model inter-group variability, and we have attempted to936

illustrate some of the range and possibilities that these models are capable of, how to fit them,937

and some issues that may arise during model fitting and testing. Specifying these models and938

techniques for fitting them are active areas statistical research, so this paper should be viewed939

as a jumping-off point for these models, rather than an end-point; we refer the reader to the940

rich literature on GAMs (e.g. Wood, 2017a) and functional regression (Ramsay & Silverman,941
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2005; Kaufman, Sain & others, 2010; Scheipl, Staicu & Greven, 2014) for more on these ideas.942
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