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Summary

1. Ecologists and evolutionary biologists rely on an increasingly sophisticated set of statistical tools to describe

complex natural systems. One such tool that has gained significant traction in the biological sciences is structural

equation models (SEM), a form of path analysis that resolves complex multivariate relationships among a suite

of interrelated variables.

2. Evaluation of SEMs has historically relied on covariances among variables, rather than the values of the data

points themselves. While this approach permits a wide variety of model forms, it limits the incorporation of

detailed specifications. Recent developments have allowed for the simultaneous implementation of non-normal

distributions, random effects and different correlation structures using local estimation, but this process is not yet

automated and consequently, evaluation can be prohibitive with complexmodels.

3. Here, I present a fully documented, open-source package PIECEWISESEM, a practical implementation of confir-

matory path analysis for the R programming language. The package extends this method to all current (general-

ized) linear, (phylogenetic) least-square, and mixed effects models, relying on familiar R syntax. I also provide

two worked examples: one involving random effects and temporal autocorrelation, and a second involving phy-

logenetically independent contrasts.

4. My goal is to provide a user-friendly and tractable implementation of SEM that also reflects the ecological

andmethodological processes generating data.
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“No aphorism is more frequently repeated in connection

with field trials, than that we must ask Nature few ques-

tions, or, ideally, one question, at a time. The writer is con-

vinced that this view is wholly mistaken. Nature, he

suggests, will best respond to a logical and carefully thought

out questionnaire; indeed, if we ask her a single question,

she will often refuse to answer until some other topic has

been discussed.”

—Sir Ronald Fisher (1926)

Introduction

The desire to understand the intricate complexity of nature is

arguably the single driving force behind all of science. Yet, for

the last century or so, ecologists and evolutionary biologists

have closely examined the impact of one or few factors on a

single response. This practice was, and sometimes still is, a

consequence of limited computational power, and the necessity

of simplification in rigorous experimentation. However, with

the advent of modern computing and the tractability of large-

scale observation, there is an increasing recognition that

multifaceted data sets representing complex natural systems

require an equally sophisticated toolbox. Structural equa-

tionmodels (SEM) provide one such tool.

Structural equation models are probabilistic models that

unite multiple predictor and response variables in a single cau-

sal network. They are often represented using path diagrams,

where arrows indicate directional relationships between

observed variables (Figs 1 and 2). These relationships can be

captured in a series of structured equations that correspond to

the pathways in the model. Two primary characteristics of

SEMs separate them from more traditional modelling

approaches:

1. Paths represent hypothesized causal relationships. This is a

departure from the phrase, ‘correlation does not imply causa-

tion.’ In fact, correlation does imply causation, but the direc-

tion of causality is unresolved, since one cannot knowwhether,

for instance, A causes B, B causes A, or both A and B are a

consequence of some third, unmeasured variable (Shipley

2000b). By using pre-existing knowledge of the system gained

through observation and/or experimentation, however, one

canmake an informed hypothesis about the causal structure of

A, B and other variables that are thought to mediate their

relationship. SEM allows for the direct test of this supposed

causal structure. In this way, SEM is a departure from tradi-*Correspondence author. E-mail: jslefche@vims.edu
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tional linear modelling by explicitly testing the hypothesis that

A causes B. While an in-depth treatment of this idea is beyond

the scope of this paper, further discussion of causality and how

it relates to SEM can be found in: Pearl (2012) and Bollen &

Pearl (2013).

2. Variables can appear as both predictors and responses.

By allowing one variable to serve as a response in one

path and as a predictor in another, SEM is useful for

testing and quantifying indirect or cascading effects that

would otherwise go unrecognized by any single model

(e.g. Grace et al. 2007).

Structural equation models demands a shift in how ecologi-

cal and evolutionary questions are structured and tested, with

an emphasis on the simultaneous evaluation of multiple causal

hypotheses within a single network.

Historically, SEMs have been estimated using a maximum-

likelihood approach to select parameter values that best

reproduce the entirety of the observed variance–covariance

Fig. 1. Structural equation models (SEM)

from Byrnes et al. (2011) exploring the effects

of storm frequency (wave disturbance) on kelp

forest community structure and food web

complexity (linkage density). Boxes represent

measured variables. Arrows represent unidi-

rectional relationships among variables. Black

arrows denote positive relationships, and red

arrows negatives ones. Arrows for non-signifi-

cant paths (P ≥ 0�05) are semi-transparent.

The thickness of the significant paths has been

scaled based on the magnitude of the stan-

dardized regression coefficient, given in the

associated box.R2s for component models are

given in the boxes of response variables (for

panels b and c, this is reported as the condi-

tional R2
c based on the variance of both the

fixed and random effects). The variable ‘Reef

habitat’ has been omitted for clarity and the

path coefficient is instead reported in the cor-

responding box of the response, as in Byrnes

et al. (2011) (NS = not significant). (a) Origi-

nal analysis using variance–covariance SEM.

(b) The same model in a fitted using piecewise

SEM and incorporating a random effect of

Site. (c) The piecewise model from panel b,

with an additional autocorrelation term for

Year.
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matrix. The goodness-of-fit of the SEM can then be evaluated

using a chi-square test comparing the estimated to the observed

covariance matrix (Grace 2006). This approach, however,

assumes that all observations are independent, and all vari-

ables follow a (multivariate) normal distribution (Grace 2006).

It also restricts the minimum number of observations neces-

sary to fit the SEM, since there needs to be sufficient degrees of

freedom to estimate the whole variance–covariancematrix (the

‘t rule,’ Grace 2006).

These restrictions led to the parallel development of directed

acyclic, or piecewise, SEMs based on applications from graph

theory. In piecewise SEM, the path diagram is translated to a

set of linear (structured) equations, which are then evaluated

individually. The switch from global estimation, where equa-

tions are solved simultaneously, to local estimation, where each

equation is solved separately, allows for the fitting of a wide

range of distributions and sampling designs (Shipley 2000a,

2009). It also, in theory, permits the fitting of smaller data sets,

since there only need be enough degrees of freedom to fit any

given component model (Shipley 2000a) (but see Discussion:

Limitations). Finally, it can incorporate distances obtained

from taxonomy or phylogeny to address the potentially

confounding effects of shared evolutionary history (Von Har-

denberg & Gonzalez-Voyer 2013). Because piecewise SEM

does not yet incorporate latent or composite variables, it is

often andmore correctly referred to as confirmatory path anal-

ysis. I will, however, continue to refer to it broadly as SEM

sensu Grace et al. (2012), who include local estimation under

their definition of ‘third-generation SEM.’

Since piecewise SEM produces no valid global covariance

matrix, alternative goodness-of-fit tests are necessary. The typ-

ical approach uses Shipley’s test of directed separation. This

procedure tests the assumption that all variables are condition-

ally independent. In simplest terms, conditional independence

implies that there are no missing relationships among uncon-

nected variables (Shipley 2000a). The first step in the test of

direct separation is to derive the minimum set of conditional

independence claims associated with the hypothesized path

diagram, known as the basis set. The basis set can be translated

into a set of linear equations, each of which can be solved like

any other linear model. The significance of any given indepen-

dence claim, that is itsP-value, can be estimated and extracted.

The test of directed separation is conducted by combining all

P-values across the basis set in a test statistic, Fisher’s C, using

the following equation:

C ¼ �2
Xk

i¼1

lnðpiÞ eqn 1

where Pi is the ith independence claim in a basis set consisting

of k claims. C can then be compared to a chi-square distribu-

tion with 2k degrees of freedom. The hypothesized relation-

ships are considered to be consistent with the data when there

is weak support for the sum of the conditional independence

claims, that is where the collection of such relationships repre-

sented by C could have easily occurred by chance, in which

case P for the chi-square test is greater than the chosen signifi-

cance threshold (typically a = 0�05). Several approachable

examples of the derivation of basis sets can be found in Shipley

(2000a, 2009).

Shipley (2013) showed that the Fisher’s C statistic can be

used to obtain a value of Akaike’s information criterion (AIC)

using the following equation:

AIC ¼ Cþ 2K eqn 2

whereC is from eqn (1), andK is the likelihood degrees of free-

dom (not to be confused with k, the number of independence

claims in the basis set). Because this estimator is not derived

from maximum likelihood, it is sometimes referred to as the C

statistic information criterion (CIC, sensu Cardon et al. 2011).

Equation (2) can also be extended to small sample sizes

(AICc), typically when the number of parameters exceeds the

total sample size n/40, with an additional correction:

AICc =C + 2K(n/n � K � 1).

The implementation of piecewise SEM is limited by the

correct specification and evaluation of the basis set, which

can be prohibitive to obtain by hand, especially for very

complex models. To that end, I provide a fully docu-

mented and open-source package PIECEWISESEM (https://

github.com/jslefche/piecewiseSEM) for the R statistical

Fig. 2. Structural equation models (SEM) derived from hypotheses in

Duffy&Macdonald (2010) exploring the relationships among eusocial-

ity, body size, host range size, and proportional regional abundance for

eusocial Synalpheus shrimps. Arrows represent unidirectional relation-

ships among variables. Black arrows denote positive relationships, and

red arrows negatives ones. Arrows for non-significant paths (P ≥ 0�05)
are semi-transparent. The thickness of the significant paths has been

scaled based on the magnitude of the standardized regression coeffi-

cient, given in the associated box. R2s for component models are given

in the boxes of response variables. (a) Analysis using variance–covari-
ance SEM. (b) The same model as in a fit using piecewise SEM, and

additionally incorporating a fixed correlation structure based on phylo-

genetic distances obtained from amolecular phylogeny.

© 2015 The Author. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 7, 573–579

PIECEWISESEM 575

https://github.com/jslefche/piecewiseSEM
https://github.com/jslefche/piecewiseSEM


language to aid in the calculation of piecewise SEM by con-

structing the basis set, conducting goodness-of-fit tests for both

the full and componentmodels, calculatingAIC scores, return-

ing (scaled) parameter estimates, plotting partial correlations,

and generating predictions. SEMs are built using a list of struc-

tured equations, which can be specified using most common

linear modelling functions in R, and thus can accommodate

non-normal distributions, hierarchical structures and different

estimation procedures. In this paper, I present two worked

examples: the first incorporatingmixed effectsmodels and tem-

porally correlated observations, and the second involving non-

independence via phylogenetically independent contrasts. The

data and R code to reproduce all analyses are given in the

Supporting information.

Example 1: Storm frequency and kelp forest food
webs

In this first example, I use data from Byrnes et al. (2011), who

examined the role of storm events on the diversity and food

web structure of kelp forests in California, USA. They com-

bined biological surveys of kelp forests over 35 different sites

and 8 years, potential food web linkages derived from the liter-

ature, data on wave height and period from physical monitor-

ing stations, and kelp canopy cover from satellite imagery.

They summarized these variables in a single causal network

derived using a priori knowledge of the system and results from

experimental manipulation (Fig. 1). They then evaluated this

model using traditional variance–covariance SEM.

Byrnes et al. hypothesized that the wave disturbance gener-

ated by winter storms would be contingent on the amount of

existing kelp, which interactively affect the spring canopy

cover. Spring canopy cover would in turn inform summer

canopy cover, which is also subject to physical forcing. The

amount of canopy cover, spring or summer, would provide

structural habitat for various species, such as algae, sessile

invertebrates and their consumers. Total species richness

would finally determine the number of potential trophic links

in the observed foodweb (linkage density, or themean number

of feeding links per observed species).

The results of their original analysis are reproduced in

Fig. 1a using the LAVAAN package (Rosseel 2012). The model

was an adequate fit to the data based on output from a chi-

square goodness-of-fit test (v2S = 8�784, P = 0�118). Byrnes

et al. (2011) saw that spring canopy cover was strongly influ-

enced by the interaction between wave disturbance and previ-

ous kelp cover: as the previous year’s cover increased, the effect

of wave disturbance on the current spring’s canopy cover

became more negative. Spring canopy cover had both a direct

negative effect on species richness, and an indirect positive

effect mediated through summer kelp cover. Species richness in

turn enhanced food web complexity. However, they noted that

the direct negative effect of spring canopy cover on species rich-

ness had a largermagnitude (standardized b = �0�23) than the
indirect effect, which is obtained bymultiplying the path coeffi-

cients (0�38 9 0�29 = 0�11). Thus, they concluded that the

removal of spring canopy by winter storms actually increased

species richness (by reducing the stronger direct negative

effect), ultimately increasing food web complexity in the short

term. However, given the effect of losing kelp, total species

richness should decline if reefs experienced multiple years of

wave disturbance in a row.

Their analysis, however, treated each observation as inde-

pendent. In reality, sites that are proximate are likely to share

similar characteristics, and within a site, observations closer in

time are likely to be more similar than those that are farther

apart. To address both of these concerns, I re-fit their original

model using piecewise SEM. In the first re-analysis, I addressed

the non-independence of sampling sites by fitting each

response to a general linear mixed effects models using the

functionlme from the NLME package (Pinheiro et al. 2013). I

chose to log-transform the variables as in Byrnes et al. (2011)

instead of fitting integer responses to a Poisson distribution in

order to facilitate direct comparisons to the original analysis,

although this is possible using PIECEWISESEM. For each com-

ponent model, I fit a random effect of Site and allowed only its

intercept to vary. I then added the component models to a list

and passed the list to the function sem.fit, which returns

the tests of directed separation, Fisher’s C statistic and AIC

values for the SEM. I then recovered the standardized regres-

sion coefficients (scaled by mean and variance, as in Byrnes

et al.) using thesem.coefs function.

The piecewise SEM based on mixed models reproduced the

data equally well as the output from LAVAAN, based on compar-

ison of the Fisher’s C statistic to a chi-square distribution

(C10 = 15�64, P = 0�11). The results from this re-analysis are

given in Fig. 1b. In general, the models explained a larger pro-

portion of variance on average than the traditional SEM,

based onR2 values derived from the variance of both fixed and

random effects (Nakagawa & Schielzeth 2012), obtained using

the functionsem.model.fits.
There are several major differences between the models in

Fig. 1a,b. First, the magnitudes of the main effect of the previ-

ous year’s kelp canopy cover and the interaction between this

variable and wave disturbance were both reduced by about

two-thirds, although they retained the same signs. Most conse-

quential for the original interpretation is that the negative rela-

tionship between spring canopy cover and species richness was

non-significant. By nesting observations based on their hierar-

chical structure, variation that was formerly assumed to be

generated by canopy cover was reallocated to random (spatial)

variation. Thus, based on the output from the piecewise SEM,

wave disturbance both directly and indirectly reduces spring

canopy cover, which indirectly reduces food web complexity as

a consequence of cascading positive relationships between

spring and summer canopy cover, summer canopy cover and

species richness, and finally species richness and linkage

density.

In the second re-analysis, I addressed both the non-indepen-

dence of sites and any potential temporal autocorrelation by

retaining the same random structure as above, and addition-

ally modelling the correlation among sampling years using a
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continuous autoregressive 1 autocorrelation structure from the

CAR1 function from the NLME package (Pinheiro et al. 2013).

This analysis also reproduced the data well based on compar-

ison of the Fisher’s C statistic to a chi-square distribution

(C8 = 7�84, P = 0�45). The results from this re-analysis are

given in Fig. 1c.

There is slightly greater amount of variance explained for

each component model vs. the piecewise SEM without the

autocorrelation structure. There are, however, fewer notable

differences between the two piecewise models. The path

between spring canopy cover and species richness is still non-

significant. There is now a significant positive path between

summer canopy cover and wave disturbance, and the formerly

significant path between the previous year’s canopy cover and

species richness is now non-significant. However, comparison

of the two piecewise SEMs using AIC reveals that the model

additionally incorporating the CAR1 autocorrelation struc-

ture is considerably less likely model than the one with only the

hierarchical random structure (AICc = 97�69 cf. 81�44).
In sum, this re-analysis has revealed that modelling the hier-

archical structure of the data leads to a different interpretation

of the original data: wave disturbance decreases foodweb com-

plexity, principally by removing habitat. This interpretation,

however, supports the overall conclusions of Byrnes et al.

(2011) that (repeated) storm events (i.e. wave disturbance)

should decrease food web complexity, although I show this

effect is mediated through the removal of habitat upon the first

occurrence of disturbance and not necessarily a decrease in

species richness after repeated disturbance events, as suggested

by Byrnes et al. (2011). Additionally, AICmodel comparisons

revealed that modelling potential temporal autocorrelation

does not add to our ability to understand this system of inter-

actions.

Further exploration of the models from Byrnes et al. (2011)

decomposing total species richness into trophic components

revealed that canopy cover significantly reduced algal but not

sessile invertebrate or mobile consumer species richness, as in

their original analysis (see supplementary code). Modelling the

random effect of Site likely absorbed some of the variation in

algae-rich vs. algae-poor sites, making it more difficult to see

the algae richness contribution to total species richness in the

simpler piecewise model (Fig. 1b,c). This additional analysis

confirms that the deeper exploration by Byrnes et al. (2011)

was warranted to reconcile the statistical output with the biol-

ogy of the system.

Example 2: Eusociality and ecological success in
sponge-dwelling shrimp

In this second example, I use population and ecological data

from a genus of sponge-dwelling shrimps (Synalpheus) to

explore the drivers of ecological success. Species in this genus

exhibit a range of social structures, from pair-forming to truly

eusocial, with a single reproducing female per colony. It has

been hypothesized that complex social structures like those

exhibited by certain Synalpheus species are ecologically advan-

tageous in fostering greater competitive ability and/or resource

acquisition. To answer this question, Duffy & Macdonald

(2010) collated data on female body mass, number of host spe-

cies used (host range), and proportional regional abundance

for 20 species of Synalpheus in Belize. They additionally calcu-

lated an index of eusociality for each species. They hypothe-

sized that more eusocial species (i.e. larger colonies with a

single breeding female) would occupy a wider range of hosts,

which would lead to greater success in defending those hosts

(i.e. achieve higher relative abundance in the study area). They

additionally hypothesized that the effect of host rangemight be

confounded by body size, since most eusocial species are small-

bodied.

As a first pass, I fit a traditional SEMusing the sem function

from the LAVAAN package (Rosseel 2012), assuming indepen-

dence among all 20 data points (species). The model repro-

duced the data well (v21 = 0�653,P = 0�419), and the results are
given in Fig. 2a. There are two significant paths of interest: a

strong positive effect of eusociality on host range accounting

for body mass (standardized b = 0�58), and a positive effect of

host range and relative abundance (0�47). There was not, how-
ever, a significant direct relationship between eusociality and

abundance. Thus, it appears that the success of eusocial species

is largely a consequence of their ability to occupy a wide range

of hosts. Because of this generalist habitat use, they then also

make up a larger percentage of total regional abundance, but

themodel does not support the hypothesis that eusociality con-

fers a direct advantage in defending and holding onto a partic-

ular habitat resource.

Of course, Duffy & Macdonald (2010) correctly point out

that the data points are not independent because some species

are more related than others. To address this issue, I re-fit the

SEM in Fig. 1a but additionally fixed the model correlation

matrix based on genetic distances derived from a phylogeny of

Synalpheus in the region (Hultgren & Duffy 2012). I obtained

the model correlations from the phylogenetic tree using the

function corBrownian from the APE package (Paradis,

Claude & Strimmer 2004), and fit the component models using

the function gls from the NLME package (Pinheiro et al.

2013). I stored the component models in a list and then evalu-

ated the SEM using sem.fit. As before, the model reproduced

the data well (C8 = 0�57, P = 0�751), and the results are given

in Fig. 2b.

The striking difference between the two SEMs in Fig. 2 is

that the phylogenetic SEMrecovers a significant negative effect

of body mass on host range (�0�32), supporting the expecta-

tion that body size has a confounding influence. Even in the

presence of a body size effect, there is a significant positive

effect of eusociality on host range (indeed it is substantially

stronger: 0�80). As with the previous SEM (Fig. 1a), there was

no direct effect of eusociality on proportional regional abun-

dance. Again, this relationship was mediated through an

increase in host range. Repeating this analysis using the func-

tionpgls from the CAPER package (Orme et al. 2013), which

estimates an additional scaling parameter k, yielded nearly

identical results (see supplementary code).
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In their original paper, Duffy & Macdonald (2010) used

multiple linear regression to explore relationships among these

four variables. In their analysis, they showed that eusociality

had a strong positive relationshipwith both relative abundance

and host range size, after accounting for differences in body

size and shared evolutionary history. Here, in a re-analysis of

their data using SEM, I show the relationship between euso-

ciality and relative abundance is not direct, but rather an indi-

rect consequence of occupying a wider number of hosts, an

insight that was simply not possible to infer from the individual

multiple regressions. The extension of phylogenetic methods to

SEM facilitates the testing of more complex, multivariate

hypotheses in evolutionary ecology and, as shown here, can

yield substantial additional insight.

Discussion

In this paper, I briefly introduce the concepts behind piece-

wise SEM, and apply piecewise SEM to two existing analy-

ses. In both cases, acknowledging the non-independence of

data points by incorporating random variation or phyloge-

netic distances yielded substantially different inferences than

multiple regression or even traditional variance–covariance
SEM. I also demonstrate how a new R package, PIECEWIS-

ESEM, can be used to quickly and easily implement com-

plex local estimation. Indeed, this package has already

been used to explore the planetary drivers of ecosystem

functioning in eelgrass beds (Duffy et al. 2015), disentangle

the influence of functional diversity across trophic levels in

experimental estuarine mesocosms (Lefcheck & Duffy 2015)

and quantify the biotic and abiotic drivers of grassland

multifunctionality (Jing et al. 2015).

BROADER APPLICATIONS

The piecewise SEM package contains a number of addi-

tional functions that may be of general interest to users.

sem.model.fits, for example, generates R2,

pseudo-R2 and AIC values for component models based

on methods in Nakagawa & Schielzeth (2012) and Johnson

(2014). sem.predict is a wrapper for the generic

predict function, and additionally implements stan-

dard errors on predictions from models constructed using

lme(r) based on the variance of the fixed effects only

http://glmm.wikidot.com/faq), although these approaches

are controversial because they do not take into account the

uncertainty of the random effects into account, and thus,

estimates of error on predictions from mixed models should

be interpreted with caution. partial.resid returns

the partial correlation plot between two variables in a single

model having accounted for the effects of covariates, and is

an intuitive way to visualize the partial effects returned

from sem.coefs or, more generally, summary.
Exploration of partial correlations also allows for the

identification of previously unrecognized nonlinear

relationships, which can then be incorporated into the

model structure.

L IMITATIONS

While it has been suggested that piecewise SEM can be used

to circumvent restrictions on sample size (Shipley 2000a), it is

important to note that small sample sizes may still have sev-

ere consequences for the analysis. In particular, tests of direc-

ted separation may substantiate a ‘good fitting model’ only

because the tests lacked sufficient power to reject the null (i.e.

P-values for missing paths are all >0�05). This outcome would

be increasingly common as models increase in complexity,

but not replication. Ideally, investigators should devise the

hypothesized model beforehand and use it to inform data col-

lection, ensuring sufficient replication from the start. As a

general rule, Grace, Scheiner & Schoolmaster (2015) propose

that the ratio of the total number of samples to the number

of variables (d) should not fall below d = 5. It is also critical

to examine the fits of the component models: if the overall

SEM has an adequate fit but the component models have

low explanatory power, then it is not acceptable (or particu-

larly useful) to draw inferences from the SEM. Finally, users

may find themselves with the opposite problem, where large

sample size drives statistical but not biological significance,

leading to rejection of the basis set on the basis of biologically

inconsequential effect sizes. In this case, implementing a more

stringent cut-off for statistical significance may alleviate the

issue.

It is also worth noting that P-values derived from the

LMERTEST package (Kuznetsova, Brockhoff & Christensen

2013) are somewhat unstable at the time of writing, and

can often lead to errors in the sem.fit function. Esti-

mates from NLME appear to be more reliable, and I recom-

mend users should construct their models using NLME when

LMERTEST produces an error, assuming the response is nor-

mally distributed.

While the piecewise SEMapproach represents a considerable

leap forward in addressing the assumptions of real-world data,

its infancy relative to traditional SEM has led to some limita-

tions. For instance, there is no real implementation of corre-

lated errors: relationships that are bidirectional and assumed to

be caused by a shared underlying driver. PIECEWISESEM

implements a crude approximation of correlated errors by

allowing the user to exclude them from the basis set (since there

is no presumed direction of causality), and then running a

simple test of significance on the bivariate correlation;

however, other methods have been proposed (Shipley 2003),

and may be incorporated in future iterations. Piecewise SEM

also cannot disentangle cyclic relationships (e.g. A ? B ?
C ? A), making it impossible to evaluate feedbacks (Shipley

2009). Similarly, this method cannot evaluate reciprocal

relationships in the same model (A ? B and B ? A, not to

be confused with a bidirectional arrow indicating a correlated

error). Finally, there is no formal integration of latent variables

– those that are not directly measured, but inferred through a

combination of observed variables (Grace 2006) – into

piecewise SEM as of yet. It would be possible to derive

predictions approximating a latent variable using exploratory

factor analysis, or through the application of MCMC
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estimation. However, there has yet to be a thorough

investigation and application of factor analysis to piecewise

SEM. With luck, future developments will relax some of these

limitations.
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