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Abstract 

1: Randomized experiments have long been the gold standard in determining causal effects in 

ecological control-impact studies. However, it may be difficult to address many ecologically 

and policy-relevant control-impact questions-such as the effect of forest fragmentation or 

protected areas on biodiversity-through experimental manipulation due to scale, costs and 

ethical considerations. Yet, ecologists may still draw causal insights in observational control-

impact settings by exploiting research designs that approximate the experimental ideal.   

2: Here we review the challenges of making causal inference in non-experimental control-

impact scenarios as well as a suite of statistical tools specifically designed to overcome such 

challenges. These tools are widely used in fields where experimental research is more limited 

(i.e., medicine, economics), and could be applied by ecologists across numerous sub-

disciplines.  

3: Using hypothetical examples, we discuss why bias is likely to plague observational 

control-impact studies in ways that do not surface with experimental manipulations, why bias 

is generally the barrier to causal inference, and different methods to overcome this bias.  

4: Satellite-, survey- and citizen-science data hold great potential for advancing key questions 

in ecology that would otherwise be prohibitive to pursue experimentally. However, to harness 

such data to understand causal impacts of land, environmental and policy changes, we must 

expand our toolset such that we can improve inference and more confidently advance 

ecological understanding and science-informed policy.  

 

Keywords: before-after-control-impact, causal analyses, econometrics 
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Introduction 

The methodological gold standard in ecology, as in many scientific disciplines, is the 

randomized control trial, also known as the control-impact experiment. The random 

assignment of subjects (or sites) into treatment (or impact) and control groups with pre-

determined treatment levels has been used to uncover innumerable fundamental findings in 

ecology. For example, common garden experiments seek to compare the effect of a fixed 

treatment (fertilizer supplements, fungal inoculations, predator exclusions, genetic strains) 

using two or more groups that are otherwise exposed to the same environmental conditions. 

Since we cannot observe the exact same site both treated and not treated simultaneously, we 

must compare between sites to identify the effect of treatment. The key to valid comparison is 

to assign treatments to sites at random. In such randomized experiments, only the treatment 

should differ systematically between treatment subjects and control subjects; this allows 

researchers to interpret the average difference between treatment and control groups as the 

average causal effect of treatment at the population-level.  

Ecologists are increasingly interested in taking advantage of survey, remote-sensing 

and citizen-science data to address ecologically and policy-relevant questions in systems that 

do not easily lend themselves to experimental manipulation. For example, the placement of 

protected areas is rarely under the control of the researcher and they are generally not 

randomly placed on a landscape. In such cases, how can one identify the causal effect of 

protected areas on the abundance of, say, an economically or ecologically important species? 

To do so, the researcher must overcome the fundamental challenge present in non-

experimental settings: the inability of researchers to have full control over treatment 

assignment (i.e. protected and not protected sites), which opens up the possibility that the 

outside forces that influence observed treatment are doing so in a non-random manner. 

Naively applying regression, anova or other statistical approaches without accounting for the 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

non-experimental nature of observational data can lead to inappropriate conclusions due to 

overlooked bias from improper comparisons between areas chosen and not chosen for 

treatment. In other words, the common mantra of “correlation does not imply causation” 

applies. However, not all is lost. Ecologists can establish causal inference with observational 

data in a control-impact framework if we incorporate careful research design and rigorous 

statistical approaches expressly designed for the purpose.  

 Here we discuss the challenge and promise of inferring causality from non-

experimental data in control-impacts studies. We begin by discussing frameworks for causal 

inference. We then expand on the nature of why observational data present specific 

challenges not encountered in randomized experiments, which provides paths forward. To 

that end, we review several statistical approaches often associated with econometrics that can 

potentially overcome bias in control-impact analyses with observational data. To the extent 

possible, we seek to build intuition rather than to delve into the technical details. We use 

hypothetical examples to do so, since few real data sets are amenable to all methods 

discussed and the true population parameter is indiscernible in real data. 

 

Frameworks of Causal Inference 

In control-impact studies, causal inference is achieved through explicit comparison 

across units that are treated and units that serve as controls. In such settings, the key concept 

is that of a counterfactual: what would outcomes for the treated units look like in the absence 

of the treatment? If control units differ from treated units in the absence of the treatment, then 

a causal interpretation is not feasible. 

There are several different frameworks for conceptualizing causal relationships in 

order to facilitate causal inference. Two of the most well-known are Pearl’s structural causal 

model (SCM; Pearl 2000, 2010) and Rubin’s potential outcomes model (PO; Rubin 2005). 
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SCM is a powerful framework for assessing causal relationships between variables. It 

integrates nonlinear structural equation modeling (SEM), graphical representation of causal 

pathways, and potential outcomes analysis (Pearl 2010). SEM, first developed in the early 

decades of the 20
th

 century (Wright 1921), has been used in ecological systems to generate 

and test complex hypotheses about direct and indirect species interactions and system 

processes (Grace et al. 2010; Fan et al. 2016). SCM extended SEM to more flexible 

distributional assumptions, and links the equations embodied in the causal diagram (or 

directed acyclic graph, DAG) to the concept of counterfactuals.  

In contrast, the PO framework is based on a notion of causality which places an 

emphasis on what researchers can and cannot observe, and an emphasis on isolating the effect 

of usually a single explanatory variable of interest (i.e. treatment variable) on a single 

outcome rather than on disentangling complex relationships within a network. Thus, PO is a 

particularly amenable framework for conceptualizing randomized and non-randomized 

control-impact studies. A specific insight illustrated by the PO framework is that causal 

interpretations are stymied by the fundamental truth that a subject cannot be both treated and 

not treated simultaneously (Holland 1986). As we will see below, randomization allows for 

the estimation of an average treatment effect in the population, while the absence of 

randomization requires additional understanding of the data-generating mechanism to 

develop a credible comparison. While part of the richness of SCM is the development of  a 

new mathematical language describing causal relationships without reliance on probability 

math, it is not our goal to summarize this for ecologists. We point the interested reader to 

Pearl (2010). Our goals are to first illustrate why statistical bias presents a particular 

challenge for observational studies and then introduce some practical tools from 

econometrics to improve causal inference in observational control-impact studies. As such, 

we build on the potential outcomes framework as a simple way to relate to ecology’s 
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foundations in randomized experiments. Nonetheless, bias can also be described using the 

mathematical and graphical representations of SCM, which we include in our illustrations. 

Finally, we emphasize that by employing the specific control-impact notion of causality, this 

review will not cover the notion of causality found in coupled dynamical systems, such as 

those pertaining to models of coupled predator-prey interactions. That notion of causality, 

sometimes referred to as “Granger” causality (Granger 1969) in time-series econometrics and 

recently advanced for nonlinear dynamical settings (Sugihara et al. 2012), examines how 

several interacting time series variables may be coupled over time. Because our aim is to 

inform research in control-impact studies, this review will exclude this dynamical notion of 

causality. 

 

Potential Outcomes Framework 

To be concrete, take for example, a study that is interested in estimating the effect of 

forest thinning (e.g. through US Forest Service Collaborative Forest Landscape Restoration 

Program) on songbird abundance. Which forest stands are chosen for thinning treatment is 

not under the manipulation of the researcher where treatment and control sites could be 

assigned randomly at precisely known levels of treatment. Rather, as is common with 

observational data, the decision of where to thin is likely determined by a tangle of possibly 

unknown or unobserved environmental (e.g. climate, soil), social (e.g. land values) and policy 

factors that cannot be manipulated by the researcher. As such, here and throughout we model 

the treatment as a random, rather than fixed, variable. The implication of this distinction will 

become clear later on (see Treatment as a Random Variable below). 

The US Forest Service’s priorities often include improving ecosystem function and 

reducing fire risk, and thus we can imagine that more degraded sites or sites closer to human 

habitation are more likely to be given resources than intact forests far from the Wildland-
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Urban Interface. In that case, a survey of songbird abundance across thinned and unthinned 

sites is likely to find lower mean songbird abundance in thinned sites. A similar result might 

occur if there were different levels of thinning treatments based on proximity to surrounding 

development or fire risk. In both scenarios, we would be remiss to conclude that thinning 

reduces songbird abundance based on a simple comparison of means because sites chosen for 

treatment (or sites chosen for higher levels of treatment) differed systematically from those 

not chosen (or those chosen for lower levels of treatment). This systematic difference 

between the sites assigned treatment (or different treatment levels) results in inaccurate 

estimation of the effect of treatment. More formally, the mean or expected value of the 

estimated effect of the treatment,      , is different from the true value,  . This is known as 

statistical bias. The challenge is therefore overcoming bias stemming from non-random 

treatment assignment so we can isolate the effect of the treatment on bird abundance.  

 For simplicity we start by formalizing the above scenario with a binary treatment 

(thinned, unthinned forest stands). For any site, there are two outcomes that can potentially be 

observed—songbird abundance if the site was selected for the thinning treatment and 

songbird abundance if the site was not selected for the thinning treatment. Formally, 

                   
           
           

       

where     is songbird abundance in site i had that site not been chosen for treatment       , 

and     is songbird abundance in site i had it been chosen       1.  The observed outcome 

   can be related to the potential outcomes by, 

                         

                                                 
1 The formal notation for potential outcomes was introduced by Neyman (1923, translated and reprinted in 

1990) in the context of randomized experiments. It wasn’t until the work of Rubin (1974) that the potential 

outcomes framework was considered for observational data settings. The term “Rubin Causal Model” first 

appears in Holland (1986). 
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 The causal effect of thinning for site i is        . For many empirical applications, 

the question of interest, or estimand, is the population average treatment effect (ATE). Let 

E[] represent the expectation operator, or the population mean of a random variable. By the 

law of large numbers, the sample mean converges to the population mean so E[] can also be 

thought of as the sample average in very large samples. The ATE can be written as 

                 
 

 
           

 

   

     

where N is the population size.   is the causal effect we would like to be able to estimate if it 

were possible to observe, for every site i, its outcome both when it is thinned (      and when 

it is not thinned (    .  Since this is impossible, we must learn about the effect of forest 

thinning through comparisons across untreated units that can serve as valid counterfactuals.  

If we took the simple observed differences in mean songbird abundance between 

treated and untreated sites, we may capture more than we intended. The simple difference in 

means between sites that were and were not treated is equivalent to 

                      

                           

                                                        

  

The first composite term on the right-hand side of equation (4) represents the average 

effect of treatment on sites that were thinned (“average treatment on the treated”, ATT). The 

second term captures the systematic difference between sites that are and are not treated in 

the absence of treatment (e.g., if the thinning program was cancelled after site selection but 

before thinning occurred, would average bird abundance differ between selected and not 

selected sites?). Thus, the second term captures the “selection” bias stemming from non-

random treatment assignment. Selection bias would arise if sites chosen for thinning were 

Average treatment effect on the treated (ATT) 

 

Selection bias 
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less isolated or  otherwise in less pristine condition than sites not chosen. In that situation the 

estimated effect of thinning would capture both the true effect of the thinning treatment on 

bird abundance and the pre-treatment difference in site quality. Quasi-experimental 

approaches including BACI designs seek to remove selection bias so we can isolate the 

causal effect of the treatment from observed differences in outcomes between treatment and 

control groups.  

 

A key assumption   

Regardless of whether treatment is randomly assigned, deriving causal inference 

based on counterfactuals invokes the assumption that there is no treatment spillover or 

interference between sites. This is known as the Stable Unit Treatment Value Assumption 

(SUTVA; Rubin 1980; 2005). SUTVA also assumes there are not different versions of the 

same treatment. This would be violated if, for example, some sites are only treated on paper, 

but action never happens on the ground.  

SUTVA is required for potential outcomes to be well defined and is built into the 

potential outcomes definition in equation (1). However, one can envision conditions in 

ecological systems that violate SUTVA. For example, if population growth in a non-treated 

site is so high that there is net dispersal away from the site and into a treatment site, there 

would be treatment spillover, which would obfuscate the effect of the treatment alone. 

Treatment spillover would generally occur with spatial dependence between outcomes, where 

treatment of one site caused higher abundance at a nearby site. However, spatial correlation 

of the standard errors (a common feature of ecological data) would not violate SUTVA.   

At first glance, SUTVA seems overly restrictive. However, studies can often be 

designed such that SUTVA is reasonable. For example, researchers can aggregate to larger 

units (e.g. individual to population, patch to landscape; Imbens & Wooldridge 2009). Lack of 
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interference between observations underlies many statistical analyses trying to ascertain 

treatment effects in randomized trials as well as observation studies. If one is to relax 

SUTVA, additional information is needed to specify the exact extent and intensity of 

interactions across individuals (e.g. Deschenes and Meng, 2018). This is an active area of 

research (e.g. Manski 2013). 

 

Randomized Experiments 

If we are willing to make the SUTVA, causal inference becomes a problem associated 

with assignment of treatment. If treatment status,   , is independent of potential outcomes as 

it theoretically would be in a random experiment, the second composite term of equation (4) 

drops out since                        . Further, the conditional expectation simplifies 

to the unconditional expectation in the first term,                                

       because potential outcomes are independent of treatment status (          , where   

denotes statistical independence). Thus, the simple difference in population means, the left-

hand side of equation (4), is equal to ATE, equation (3), if treatment status is randomly 

assigned. This highlights why experimental manipulations are the gold standard for causal 

inference. Replacing the population means with the corresponding sample analogs results in a 

consistent estimate of the ATE.  

In observational analyses, we must remove selection bias associated with non-random 

assignment of treatment as bias precludes the identification of causal relationships. How we 

do so depends on what we know about how treatment is assigned and whether we can 

observe relevant covariates that determine treatment assignment. Below we transition from 

potential outcomes to regression, and from there to different regression-based methods for 

deriving causality for treatment selection based on observable and unobservable 
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characteristics. See SI for example code and table 1 for a summary of data requirements and 

key assumptions for each method.  

 

Regression Analysis 

 Equation (2) can be rewritten in terms of a regression model. To build intuition in the 

most straightforward manner, we omit covariates for now. For simplicity, we also assume 

that treated sites respond the same way to thinning (i.e. constant treatment effects) and the 

model is linear in parameters. In this case, we can write equation (2) as,  

                 

where         ,           is the treatment effect, and    is the site-specific random 

error term. 

 Evaluating equation (5) for treated and untreated sites yields, 

                       

                                     

                             

This illustrates that the bias that prevents us from isolating the causal effect ( ) from 

the simple difference in the treatment and control sites (                     ) stems 

from a correlation of the treatment with the error term. In other words, if the site-specific, 

random error term were not related to treatment status,                      , the 

average treatment effect, β, is all that remains. Though we used the population regression for 

ease of illustration, by the law of large numbers, the sample regression coefficients are a 

consistent estimate of the population coefficients.  
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Treatment as a Random Variable 

It is worth noting that throughout, we have been considering the treatment as a 

random, rather than a fixed, variable. This distinction, which is less essential in the context of 

randomized experiments, is the basis for why bias may arise in observational data settings.  

In theory, a randomized experiment enables the researcher to fully manipulate which 

units are assigned to treatment or control, and for non-binary treatments, to determine the 

specific levels of treatment. The ability to fully manipulate treatment means that the 

researcher may be willing to assume, as Sokal & Rohlf (2012) describe in their seminal 

Biometry text (p 475), “the independent variable X is measured without error. We therefore 

say that the X’s are “fixed,” which means that whereas the dependent variable Y is a random 

variable, X does not vary at random, but rather is under the control of the investigator”.  If X 

is assumed to be fixed, the correlation between the treatment variable and the error that we 

have been discussing at length is zero, by assumption
2
.  This point is not often emphasized 

because in a perfectly executed randomized experiment, treatment (as a random variable) is 

uncorrelated with the errors anyway. Of course, in practice, assuming X is obtained without 

error may not hold due to naturally occurring variation, and randomization may not 

inherently provide bias-free estimates if randomization is incomplete (e.g. due to unknown 

individual variation in study units).  

Yet, in observational data there is a clear distinction with regard to the treatment 

variable. By definition, treatment (e.g. location and extent of deforestation, protected areas, 

hunting pressure etc.) is determined by “outside” and potentially unknown forces that are 

beyond a researcher’s control. Treating explanatory variables as random variables 

acknowledges the possibility of a correlation between the treatment variable and the 

                                                 
2 Mathematically, this stems from the “exogeneity assumption” required for unbiased estimators. Exogeneity 

implies zero correlation between the treatment and the true model error,          . If treatment is considered 

fixed, it can be removed from the expectation such that                  . Since the latter term equals zero 

by assumption, assuming treatment is fixed implicitly assumes away any potential correlation between the 

explanatory variables and the error term, and thus the possibility of many forms of statistical bias. 
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unmodeled determinants of the outcome (i.e. model errors), and thus various sources of bias 

that preclude causal interpretations of correlations. We next discuss these sources of bias 

before turning to various research designs that potentially enable causal inference with 

observational data.  

 

Sources of Bias  

 Bias implies that the expected value of the sample estimator does not reflect the true 

population parameter,         (Fig. 1a). While the correlation between the hypothetical 

model errors and treatment (           is broadly referred to as endogeneity bias, there 

are a couple of specific scenarios that are widely observed in observational studies.  

 Any covariate that is excluded from the model ends up in the error term. Thus, any 

variable that is correlated with the treatment and drives the outcome would result in a 

correlation between the errors and the treatment if not explicitly included in the model. For 

example, if forest stand age was correlated with the treatment (e.g. thinning) and bird 

abundance (e.g. through habitat availability), omitting forest age as a covariate would induce 

a correlation between the errors and the treatment and result in a biased estimator of the effect 

of thinning on bird abundance due to the selection bias problem illustrated earlier (which is 

also referred to as omitted variable bias and can be illustrated via a DAG, fig. 2). This 

contrasts with variables that drive the outcome but are not correlated with the treatment. 

Failing to control for these variables adds noise (i.e. increases the standard error of the 

parameter estimate) but does bias regression coefficients.  

The second major source of endogeneity bias occurs when there is a feedback 

between the outcome variable back to explanatory variables, known as reverse causality. In 

other words, if thinned sites were chosen to avoid areas with high bird abundance, then 

abundance drives thinning and thinning drives abundance. In this case, it is impossible to 
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estimate either directional relationship without addressing the feedback because of the 

induced correlation between the errors and the treatment going in either direction (bird 

abundance  thinning, thinning  bird abundance).  

 Lastly, a persistent challenge for observational studies is the presence of 

measurement error in the explanatory variables. While measurement error of the outcome 

variable results in noise, it does not cause bias unless the measurement error is correlated 

with the explanatory variables. In contrast, measurement error in the explanatory variables 

causes what is known as Classical Errors-in-Variables, which biases the slope estimates 

towards zero.  

 

Methodological Approaches  

This section details five empirical approaches that, under different statistical assumptions, 

enable causal interpretations when examining observational data.  

1. Difference-in-Difference (DiD): In the absence of experimental manipulation, it is difficult 

to parse apart the effect of the treatment from background changes in environmental 

conditions. Luckily, many survey data sources are collected over multiple years. When 

“panel” (or “longitudinal”) data are available, the analyst can sometimes leverage repeated 

observations over time to address bias due to omitted, time invariant confounders.  

Like BACI paired (Stewart-Oaten et al. 1986), DiD is a paired design where treatment 

and control sites are observed at the same time before and after the treatment occurs (Angrist 

& Pischke 2009). We introduce the basic DiD despite its similarities to BACI to introduce 

readers to another methodological literature and as an entryway to the panel data models 

discussed below.  

With repeated observations of the same groups over time a DiD is estimated using the 

below model, 
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where i denotes an individual observation, g denotes group, and t denotes the time period. 

Here  “treat” is a dummy variable that is equal to one for sites that eventually received 

treatment (treatment group) and “after” is a dummy variable that is equal to one “after” the 

treatment occurs. By conditioning on these dummy variables in an ordinary least squares 

(OLS) framework, the average differences between treatment and control (before treatment) 

and average differences between pre-treatment control sites and post-treatment control sites 

are removed. Thus, the coefficient on the interaction term,  , indicates the change in outcome 

due to the treatment after differencing away persistent difference between groups and shared 

time trends. Normality of the errors is not required for  OLS to be unbiased. While the basic 

model could be estimated with a repeated measure ANOVA if normality of the errors is 

assumed, a regression approach is advantageous with complex models, missing or 

unbalanced data, and when assuming normality or homoscedasticity of the errors is overly 

restrictive. 

The simplest setup is when outcomes are observed in two periods for both groups 

where one group’s treatment status changes from the first period to the next.  However, the 

fundamental assumption of DiD (and other BACI designs) is that if not for the treatment, the 

two groups would have parallel time trends (Angrist & Pischke 2009). As an indirect test of 

this assumption, one can see if there are common time trends across groups before the 

treatment by using additional pre-treatment time periods, when available. DiD can be 

extended to include covariates, different timing of treatment (“staggered” DiD) and an 

additional control group (“triple difference”).  
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2. Within-estimator Panel Data Model: The within-estimator panel data model is a 

generalization of DiD models to multiple groups and time periods.  

 Let us say we are again interested in song bird abundance, but this time as a function 

of forest fragmentation. With repeated observation of the same sites over time, we can exploit 

year-to-year deviations from the mean forest fragmentation of a site to estimate how 

fragmentation affects bird abundance, under certain conditions, even if we do not have 

measurements of all the covariates. 

 The within-estimator (also called the least-squares dummy variable model) is often 

and confusingly termed a “fixed effects” panel data model, but we continue with “within-

estimator” to avoid confusion with “fixed effects”, as defined in biostatistics (i.e. a non-

random variable). The within-estimator model could be represented as follows, 

                                      

where     indicates bird abundance in site i and time t,   is the intercept,   is the coefficient 

of interest, and     is the random error term. As elsewhere in this manuscript, we ignore 

covariates for notational convenience. 

 Here    represents unobserved heterogeneity that is unique to each site i but time 

invariant over the study period (e.g. climate, soil quality) and     represents unobserved 

heterogeneity that is unique to each year (e.g. weather, technology) that is shared by all sites. 

If either    or    is ignored, it ends up in the error term, potentially creating endogeneity as 

described above. Ecologists are familiar with using site or year random effects in mixed 

effects models. Random effects models, such as random intercept models, assume that the 

unobserved site- or year-specific heterogeneity is uncorrelated with the treatment 

(Wooldridge 2002). In many cases this is a strong assumption. For example, climate, soil 

quality, proximity to urban centers are all likely to be correlated with fragmentation. If these 

variables were measured and included directly, there would be no issue. However, if they are 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

not, a site random effect would not avoid omitted variable bias because, although the 

correlation of observations at the same site is modeled, the correlation between covariate 

(fragmentation) and the error term is not removed. Instead, the within-estimator can be used. 

The effect of the within-estimator is that observations are differenced from their site-specific 

mean and thus identified by “within” site (or year) variation. If the site-specific (time-

specific) unobserved heterogeneity is correlated with fragmentation does not matter because 

it is effectively removed from the model in the differencing. In the case where the site-

specific (time-specific) heterogeneity was indeed uncorrelated with the covariates (the 

random effects assumption), the within-estimator would remain unbiased but would be less 

statistically efficient, or in other words have a larger variance, than the random effects 

estimator (Fig. 1). However, if the site-specific (time-specific) heterogeneity was correlated 

with the observed covariates, only the within-estimator model would remain unbiased. 

Though we only discuss site and year above, the same logic and applies to other group 

characteristics as well. We point the reader to Larsen & Noack (2017) for an example of 

using the within-estimator to understand how crop diversity affects agricultural pesticide use, 

after controlling for year-specific, crop-specific and region-specific unobserved 

heterogeneity. 

3. Instrumental Variables: The within-estimator requires panel data and generally does not 

solve reverse causality bias (Table S1; for an exception see Larsen et al. 2014). However, the 

instrumental variables (IV) approach can jointly solve selection bias, measurement error, and 

reverse causality, provided certain assumptions are met. To isolate causal effects of a 

treatment on an outcome, the IV approach requires the researcher to select an “instrument” 

that (1) is sufficiently correlated with the endogenous treatment variable and (2) does not 

affect other determinants of the outcome (i.e. does not belong in the main regression). These 

two assumptions ensure that the variation in the treatment variable driven by the instrumental 
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variable is also uncorrelated with other determinants of the outcome, thus removing the 

source of endogeneity bias.  

 As an illustration of how IV works, consider predator-prey relationships which are 

classic examples of reverse causality as predator abundance drives prey abundance, but the 

reverse is also true (Kendall 2015). If we were, for example, interested in estimating the 

effect of wolf abundance on moose abundance using a linear regression, our linear 

coefficients may instead capture the reverse effect. To estimate the effect of wolf on moose 

abundance, we need to sever the reverse causality pathway by isolating a driver of wolf 

abundance that has no direct effect on moose abundance. One possible instrument would be 

the prevalence of canine distemper, which drives wolf abundance, but should not affect 

moose abundance (except through changes in wolf abundance). Note, we are assuming here 

that this predator-prey system is not closely coupled. If it were closely coupled such that there 

were offset boom-and-bust cycles, our estimates of the causal effect using cross-sectional 

data at any point in time would fail to capture the cyclical nature of the relationship (e.g. 

Sugihara et al. 2012).  

Turning to how an IV approach would work in this setting, we can use the exogenous 

change in wolf abundance due to canine distemper to estimate the effect of wolf abundance 

on moose abundance. Conceptually, an IV approach occurs over a two-stage regression 

process. The first stage regression relates canine distemper prevalence to wolf abundance via,  

                                      

In the second stage regression, moose abundance is then regressed on the wolf abundance 

predicted by canine distemper from the first stage,  
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As equations 10-12 show, the variation in wolf abundance used to estimate the effect on 

moose abundance comes only from canine distemper. Provided that canine distemper is not 

correlated with other drivers of moose abundance, contained in the error term   , then an IV 

model estimates a causal effect.  

In practice, the IV approach entails two further details. First, IV is usually 

implemented with two-stage least squares, where equations 10 and 11 are jointly estimated. 

This is to account for sampling variability in the predicted endogenous variable. Second, as a 

diagnostic of whether the instrumental variable is strongly correlated with the endogenous 

variable, one often examines variants of the F-statistic from the first-stage regression in 

equation 10. Such tests reveal whether there is a  “weak instrument” problem, the presence of 

which introduces a bias in the IV estimate that can be as large as the endogeneity bias in the 

initial linear regression model (Bound et al. 1995). For a more in-depth discussion of IV in an 

ecological context, we direct the reader to Kendall (2015). For an ecological application 

which uses the IV approach to the effect of forest fragmentation on Lyme disease incidence, 

we direct the reader to MacDonald et al. (2018).  

 4. Regression Discontinuity: In some settings, the assignment of treatment may depend on an 

arbitrary rule arising from policy or institutional features. Modifying our earlier land-use 

example, let’s say forest stands were eligible for thinning if they were within 15 km of at 

least one developed area and were at least 3 ha in size. As is often the case with such cutoff 

rules, both the 15 km distance and 3 ha size criteria may have been arbitrarily specified by 

some policy. However, it may not be desirable to implement a difference-in-difference 

method if finding control units that satisfy these criteria requires a researcher to expand the 

data setting into places that are unlikely to be similar. For example, a forest stand in 

Minnesota is unlikely to be a valid control for a forest parcel in California even if both have 
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the same distance to a developed area and size. Similarly, using instrumental variables may 

not be feasible in some cases due to a lack of a satisfactory instrument. 

In such settings, a researcher may exploit the arbitrary nature of the cutoff rule. Here, 

one can try to compare stands above 3 ha in size that are just less than 15 km from a 

developed area (treatment) with similarly sized stands that are just more than 15 km from a 

developed area (control). Alternatively, for all parcels that are less than 15 km from a 

developed area, one can compare stands that are just above 3 ha in size (treatment) with those 

that are just below 3 ha (control). Such comparisons implement the regression discontinuity 

(RD) design. Specifically, the RD method exploits a discontinuity in treatment assignment 

around some threshold value of a “forcing” variable, which in our example would be either 

distance to a developed area or parcel size.  

The key statistical assumption for the RD method to be valid is that only the 

probability of receiving the treatment jumps discontinuously as the forcing variable crosses 

the threshold. All other factors that determine the outcome must be continuous around the 

threshold. That is, going back to our example, only thinning eligibility changes at the 15 km 

distance threshold so that any outcome differences across the threshold can be attributed 

solely to thinning eligibility. Under these conditions, the RD method estimates the local 

average treatment effect only for the subpopulation close to the threshold. In practice, this 

means that the RD method is very data demanding, and requires a sufficient density of 

observations within narrow bandwidths around the threshold of the forcing variable. 

Interested readers can learn more about this issue and many other RD implementation 

considerations in Lee and Lemieux (2010). 

5. Propensity score. Finally, in some settings, it may be argued that a researcher can observe 

all known determinants of an outcome that is correlated with the treatment of interest. In that 

case, known as “selection on observables”, simply controlling for those covariates in a 
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standard regression setting would enable a causal interpretation. However, for many 

ecosystems, the list of covariates may number in the hundreds, with possible combinations of 

covariates observed for a treated unit not appearing for a control unit.  

Propensity scores avoid this high-dimensionality problem by matching or weighting 

the probability that a site receives treatment based on a function of observable characteristics. 

The propensity score is the probability a site receives treatment given its baseline 

characteristics,                     where          . It follows from the treatment 

ignorability assumption that                    (Rosenbaum & Rubin 1983). Thus, 

conditional on the propensity score, treatment is independent of potential outcomes. 

Rosenbaum & Rubin (1983) also show that treatment and control observations with the same 

value of the propensity score balance in the distribution of baseline characteristics.  

Propensity scores are estimated using a regression model for binary outcome variables 

(e.g. logit or probit) where probability of treatment is estimated as a function of baseline 

characteristics with highly flexible functional form. The specification should balance the 

distribution of baseline characteristics across the distribution of propensity scores.  

 There are several ways propensity scores can be used including matching on 

propensity scores, inverse probability weighting the estimator, using propensity scores in a 

weighted regression, and using propensity scores as a covariate adjustment in linear 

regressions. A thorough discussion of different methods can be found elsewhere (Austin 

2011). We simulate propensity score matching and propensity scores as a covariate 

adjustment in a linear regression (SI), and point the reader to Pearson et al. (2016) for an 

ecological application focused on agricultural land cover and aquatic ecosystem impacts.   
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Discussion 

A multitude of environmental and ecological challenges facing natural systems in the 

coming decades can be informed by observational data. Leveraging the data-rich landscape of 

the twenty-first century for impact studies necessitates incorporating statistical tools 

specifically developed for disentangling causal relationships in the absence of randomized 

experiments. Here we discussed how observational data differ from experimental data, why 

this difference is of crucial statistical importance, and introduced some assumptions and 

approaches that can be used to recover a causal interpretation of treatment effects in the 

absence of randomly assigned treatment. 

  In particular, we emphasized the fundamental importance of zero correlation between 

the covariate of interest and a model’s error term. The presence of such a correlation leads to 

what is known as endogeneity bias and thus, incorrect coefficient estimates. Though we 

avoided discussing specific estimation methods, all common regression methods (ordinary 

least squares, maximum likelihood, generalized least squares, etc.) will generally produce 

biased estimates of the causal effect in the presence of endogeneity bias.  

The symptoms of endogeneity bias can present as spatial or temporal autocorrelation 

in the residuals. However, if autocorrelation is due to omitted variables that are spatially or 

temporally correlated (e.g. climate, soil quality) and correlated with the treatment variable, 

methods that only adjust for autocorrelation of the errors will fail to produce unbiased slope 

estimates for the treatment of interest. Similarly adding random effects of site or year may not 

reduce bias. If site characteristics are correlated with the covariate of interest, random effects 

estimators will remain biased. Rather, recognizing and applying methods to overcome the 

underlying source of endogeneity bias are fundamental to reliable point estimates.   
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This paper’s main contribution is to provide basic intuition for developing causal 

inference using observational data for different types of control-impact analyses. We 

necessarily could not provide a full treatment of such approaches, nor comprehensive 

treatment of causality in all observational settings. For instance, our maintained assumption 

throughout this manuscript that a random sample could be drawn from the population (at least 

in the cross-section dimension; Wooldridge 2002), extends to more complicated sampling 

designs such as stratified or clustered sampling (Wooldridge 2002). Further, we ignored 

concerns regarding the efficiency of estimators. Lastly, our focus on control-impact analyses 

does not include all notions of causality relevant to ecologists. In particular, while many of 

the methods discussed can be extended to nonlinear models where the marginal effect of the 

treatment variable is not constant over its entire range (e.g. logistic regressions), we excluded 

discussion of dynamic notions of causality involving coupled variables (e.g. Granger 1969; 

Sugihara et al. 2012). For coupled systems such as coupled predator-prey cycles, the methods 

discussed here would misspecify the nature of relationship as such systems cycle among 

positive, negative and neutral correlation between predator and prey. As observational data 

expand to provide sufficiently expansive species-specific time series observations, dynamic 

forms of causality will become increasingly relevant.  

Nevertheless, many global environmental challenges of today and tomorrow will take 

the form of control-impact studies, where treatment evaluation is of primary interest. It is for 

those questions that a focus on unbiased statistical estimates of the treatment effect will be 

invaluable for addressing important ecological questions. Though we relied on hypothetical 

examples to streamline discussion, these methods discussed herein are not entirely new to 

ecologists. We point the reader to Gross & Rosenheim (2011), Bonds et al. (2012), Larsen 

(2013), Larsen and Noack (2017), and MacDonald et al. (2018) for empirical ecological 

studies using these methods, to Kendall (2015) and Butsic et al. (2017) for additional 
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methodological discussion aimed at the ecology audience, and to Wooldridge (2002) or 

Angrist & Pischke (2009) for advanced and introductory texts, respectively, on econometric 

methods. Ecologists have a strong tradition of causal inference in experimental research. Here 

we encourage a similarly strong interest in causality in observational control-impact studies 

such that we can better leverage novel data sources to inform ecological understanding and 

environmental policy.  
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Table 1. Data requirements and key assumptions of different methodology discussed.  

Method Addresses Situation Data requirements Key Assumptions 

Difference-
in-difference 

Selection bias 
stemming from 
which group gets 
treatment. 

Time trends and 
group specific 
averages differ 
between treatment 
and control groups.  

At least two periods of 
data, before and after, 
observed for both a 
treatment and control 
group.  

Parallel time trends 
between the 
treatment and 
control group prior 
to treatment. 

Within-
estimator  

Selection bias 
stemming from 
unobserved or not 
included variables 
that are correlated 
with the covariate 
of interest and the 
outcome.  

Time shocks shared 
by all observations 
(time dummies), time-
invariant 
characteristics unique 
to individual 
observations or 
groups (individual, 
group dummies) 

Panel data where 
covariates of interest 
and outcome variable 
vary over time and/or 
within individuals (i.e. 
within the dummy 
variable group(s)). 

Strict exogeneity.  

Instrumental 
Variables 

Reverse causality. 
Can also be used 
to address other 
endogeneity bias. 

There exists a 
feedback between the 
magnitude of outcome 
variable and the 
treatment variable  

Requires an 
“instrumental” variable 
that is correlated with 
the endogeneously 
determined treatment 
variable, but otherwise 
does not drive the 
outcome.    

Instrument is 
“relevant” (i.e. 
correlated with 
endogeneous 
variable) and 
uncorrelated with 
the errors. 

Propensity 
Scores 

Selection bias, if 
selection is 
determined by 
observable 
characteristics. 

Reduces the high 
dimensionality 
problem associated 
with including all 
variables that could 
determine treatment 
vs control status. 

Data on variables that 
determine selection 
into treatment and 
control groups. 

Treatment 
ignorability 
assumption.  
Common support 
between treatment 
and control groups. 
Additional 
assumptions 
depending on how 
p-scores are used. 

Regression  
Discontinuity 

Selection bias  Discrete treatment 
assignment as a 
function of some 
threshold in a 
“forcing” variable.   

Because treatment is 
assumed to be as 
good as random only 
near the threshold, 
there needs to be 
sufficient mass of data 
within narrow 
bandwidths of the 
forcing variable on 
either side of the 
threshold. 

Assignment of 
treatment is as good 
as random across 
the threshold of the 
forcing variable. 
Units are unable to 
sort across the 
threshold. 
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Figure Legends 

 

Figure 1. Properties of Linear Estimators. The desirable properties of linear estimators are 

that the estimator is unbiased (A,1), consistent (B) and efficient (C). Unbiasedness is a finite 

sample property. An estimator is unbiased, if the average (or expected value) of the sampling 

distribution is equal to the true parameter value (B, gray line). If there is a correlation 

between the model errors and treatment variables, the estimator will generally be biased 

(A,2). Consistency, like unbiasedness, is related to identification of the true relationship (i.e. 

the frequency distribution of estimated coefficients is centered on the true value, ) . 

However, consistency is an asymptotic property. We focus on unbiasedness, which is most 

relevant to finite samples, however, instrumental variables, due to its two step process, is a 

consistent but biased estimator. Efficiency is related to the spread of the distribution of the 

estimator. An efficient estimator has the minimum variance of all estimators in its class of 

estimators (e.g. linear estimators).  

 
Figure 2.  Causal diagram or Directed Acyclic Graph. Nodes represent variables, arrows 

represent possible causal effects in the direction of the arrow (a drives b, a  b),  bi-

directional arcs represent possible confounding relationships, and solid and dashed lines 

represent observed and unobserved variables, respectively. Importantly, causal assumptions 

are represented by the lack of connections, thus (A) assumes model 1 is correct, that there is 

no omitted variable confounding the estimate of the causal effect of thinning. If there was and 

it was unobserved (B), estimating model 1 would produce biased estimates of the effect of 

thinning on bird abundance due to the correlation between the errors (which include the 

unobserved confounding variable) and the treatment. If the researcher knew and could 

measure the confounding variable (C), the researcher could find unbiased estimate for the 

effect of thinning on bird abundance by modeling it explicitly; estimating model 2 rather than 

model 1.    
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