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For much of the recent history 
of science, learning from 
data was the academic realm 

of statistics,1,2 but in the early 20th 
century, the founders of modern 
statistics made a momentous deci-
sion about what could and could 
not be learned from data: They 
proclaimed that statistics could be 
applied to make causal inferences 
when using data from randomized 
experiments, but not when using 
nonexperimental (observational) 
data.3,4,5 This decision classified an 
entire class of scientific questions 
in the health and social sciences as 
not amenable to formal quantita-
tive inference. 

Not surprisingly, many scientists 
ignored the statisticians’ decree and 
continued to use observational data 
to study the unintended harms of 
medical treatments, health effects of 
lifestyle activities, or social impact 
of educational policies. Unfor-
tunately, these scientists’ causal  
questions often were mismatched 
with their statistical training. 
Perplexing paradoxes arose; for 
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example, the famous “Simpson’s 
paradox” stemmed from a failure 
to recognize that the choice of 
data analysis depends on the causal 
structure of the problem.6 Mistakes 
occurred. For example, as a gen-
eration of medical researchers and 
clinicians believed that postmeno-
pausal hormone therapy reduced 
the risk of heart disease because of 
data analyses that deviated from 
basic causal considerations. Even 
today, confusions generated by a 
century-old refusal to tackle causal 
questions explicitly are widespread 
in scientific research.7

To bridge science and data 
analysis, a few rogue statisticians, 
epidemiologists, econometricians, 
and computer scientists developed 
formal methods to quantify causal 
effects from observational data. 
Initially, each discipline empha-
sized different types of causal 
questions, developed different  
terminologies, and preferred dif-
ferent data analysis techniques.  
By the beginning of the 21st 
century, while some conceptual  

discrepancies remained, a unified 
theory of quantitative causal infer-
ence had emerged.8,9 

We now have a historic oppor-
tunity to redefine data analysis in 
such a way that it naturally accom-
modates a science-wide framework 
for causal inference from obser-
vational data. A recent influx of 
data analysts, many not formally 
trained in statistical theory, bring 
a fresh attitude that does not a pri-
ori exclude causal questions. This 
new wave of data analysts refer to 
themselves as data scientists and 
to their activities as data science, 
a term popularized by technology  
companies and embraced by aca-
demic institutions.

Data science, as an umbrella 
term for all types of data analysis, 
can tear down the barriers erected 
by traditional statistics; put data 
analysis at the service of all sci-
entific questions, including causal 
ones; and prevent unnecessary 
inferential mistakes. We may miss 
our chance to successfully inte-
grate data analysis into all scientific 

1Tukey, J.W. 1962. The future of data analysis. Annals of Mathematical Statistics 33:1-67.
2Donoho, D. 2017. 50 years of data science. Journal of Computational and Graphical Statistics 26(4):745–66.
3Pearl, J. 2009. Causality: Models, Reasoning, and Inference (2nd edition). New York: Cambridge University Press.
4Fisher, R.A. 1925. Statistical Methods for Research Workers, 1st ed. Edinburgh: Oliver and Boyd.
5Pearson, K. 1911. The Grammar of Science, 3rd ed. London: Adam and Charles Black.
6Hernán, M.A., Clayton, D., and Keiding, N. 2011. The Simpson's paradox unraveled. International Journal of Epidemiology 40(3):780–5.
7Hernán, MA. 2018. The C-word: Scientific euphemisms do not improve causal inference from observational data (with discussion). American Journal of Public Health 108(5): 
616–9.
8Hernán, M.A., Robins J.M. 2018 (forthcoming). Causal Inference. Boca Raton: Chapman & Hall/CRC.
9Pearl, J. 2018. The Book of Why. New York: Basic Books.
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questions, though, if data science 
ends up being defined exclusively 
in terms of technical10 activities 
(management, processing, analysis, 
visualization…) without explicit 
consideration of the scientific tasks. 

A Classification of 
Data Science Tasks
Data scientists often define their 
work as “gaining insights” or 
“extracting meaning” from data. 
These definitions are too vague 
to characterize the scientific uses 
of data science. Only by precisely  
classifying the “insights” and 
“meaning” that data can provide 
will we be able to think system-
atically about the types of data, 
assumptions, and analytics that are 
needed. The scientific contribu-
tions of data science can be orga-
nized into three classes of tasks: 
description, prediction, and coun-
terfactual prediction (see table for 
examples of research questions for 
each of these tasks). 

Description is using data to 
provide a quantitative summary 
of certain features of the world. 
Descriptive tasks include, for 
example, computing the propor-
tion of individuals with diabetes 
in a large healthcare database and 
representing social networks in a  
community. The analytics employed 
for description range from ele-
mentary calculations (a mean or  
a proportion) to sophisticated 
techniques such as unsupervised 
learning algorithms (cluster analy-
sis) and clever data visualizations.

Prediction is using data to 
map some features of the world 

(the inputs) to other features of 
the world (the outputs). Pre-
diction often starts with simple 
tasks (quantifying the association 
between albumin levels at admis-
sion and death within one week 
among patients in the intensive care 
unit) and then progresses to more-
complex ones (using hundreds of 
variables measured at admission 
to predict which patients are more 
likely to die within one week).  
The analytics employed for pre-
diction range from elementary  
calculations (a correlation coef-
ficient or a risk difference) to 
sophisticated pattern recognition 
methods and supervised learning 
algorithms that can be used as 
classifiers (random forests, neural 
networks) or predict the joint dis-
tribution of multiple variables.

Counterfactual prediction is using 
data to predict certain features 
of the world as if the world had 
been different, which is required 
in causal inference applications. An 
example of causal inference is the 
estimation of the mortality rate 
that would have been observed if 
all individuals in a study popu-
lation had received screening for 
colorectal cancer vs. if they had not 
received screening. 

The analytics employed for 
causal inference range from  
elementary calculations in ran-
domized experiments with no  
loss to follow-up and perfect 
adherence (the difference in mor-
tality rates between the screened 
and the unscreened) to complex 
implementations of g-methods  
in observational studies with  

treatment-confounder feedback 
(the plug-in g-formula).11 

Note that, contrary to some 
computer scientists’ belief, “causal 
inference” and “reinforcement 
learning” are not synonyms. Rein-
forcement learning is a technique 
that, in some simple settings, leads 
to sound causal inference. How-
ever, reinforcement learning is 
insufficient for causal inference in 
complex settings (discussed below). 

Statistical inference is often 
required for all three tasks. For 
example, one might want to add 
95% confidence intervals for 
descriptive, predictive, or causal 
estimates involving samples of tar-
get populations. 

As in most attempts at clas-
sification, the boundaries between 
the above categories are not always 
sharp. However, this trichotomy 
provides a useful starting point 
to discuss the data requirements, 
assumptions, and analytics nec-
essary to successfully perform 
each task of data science. A 
similar taxonomy has tradition-
ally been taught by data scientists 
from many disciplines, including  
epidemiology, biostatistics,12 
economics,13 and political sci-
ence.14 Some methodologists 
have referred to the causal infer-
ence task as “explanation,”15 but 
this is a somewhat-misleading 
term because causal effects may  
be quantified while remaining 
unexplained (randomized trials 
identify causal effects even if the 
causal mechanisms that explain 
them are unknown). 

Sciences are primarily defined 
by their questions rather than by 

10Cleveland, W. 2001. Data Science: An Action Plan for Expanding the Technical Areas of the Field of Statistics. Intenational Statistical Review 69(1):21-6.
11Robins, J.M. 1986. A new approach to causal inference in mortality studies with a sustained exposure period—Application to the healthy worker survivor effect. Mathematical 
Modelling 7:1,393–512 (1987. errata, Mathematicall Modelling 14:917–21).
12Vittinghoff, E., Glidden, D.V., Shiboski, S.C., and McCulloch, C.E. 2012. Regression Methods in Biostatistics. New York: Springer.
13Mullainathan, S., and Spiess, J. 2017. Machine Learning: An Applied Econometric Approach. Journal of Economic Perspectives 31(2):87–106.
14Toshkov, D. 2016. Research Design in Political Science. London: Palgrave McMillan.
15Schmueli, G. 2010. To explain or to predict? Statistical Science 25(3):289–310.
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their tools: We define astrophysics 
as the discipline that learns the 
composition of the stars, not as 
the discipline that uses the spec-
troscope. Similarly, data science is 
the discipline that describes, pre-
dicts, and makes causal inferences 
(or, more generally, counterfactual 
predictions), not the discipline 
that uses machine learning algo-
rithms or other technical tools. 
Of course data science certainly 
benefits from the development of 
tools for the acquisition, storage, 
integration, access, and processing 
of data, as well as from the develop-
ment of scalable and parallelizable 
analytics. This data engineer-
ing powers the scientific tasks of  
data science. 

Prediction vs.  
Causal Inference
Data science has excelled at  
commercial applications, such 
as shopping and movie recom-
mendations, credit rating, stock  
trading algorithms, and adver-
tisement placement. Some data  
scientists have transferred their 
skills to scientific research with 
biomedical applications such as 
Google’s algorithm to diagnose 
diabetic retinopathy16 (after 54  
ophthalmologists  c lassified 
more than 120,000 images ), 
Microsoft’s algorithm to predict  
pancreatic cancer months before 
its usual diagnosis17 (using the 
online search histories of 3,000 
users who were later diagnosed 

with cancer), and Facebook’s algo-
rithm to detect users who may  
be suicidal18 (based on posts and 
live videos).

All these applications of data 
science have one thing in common: 
They are predictive, not causal. 
They map inputs (an image of a 
human retina) to outputs (a diag-
nosis of retinopathy), but they do 
not consider how the world would 
look like under different courses 
of action (whether the diagnosis 
would change if we operated on 
the retina). 

Mapping observed inputs to 
observed outputs is a natural can-
didate for automated data analysis 
because this task only requires: 1) 
a large data set with inputs and  
outputs, 2) an algorithm that 
establishes a mapping between 
inputs and outputs, and 3) a met-
ric to assess the performance of the  
mapping, often based on a gold 
standard.19 Once these three 
elements are in place, as in the 
retinopathy example, predictive 
tasks can be automated via data-
driven analytics that evaluate and 
iteratively improve the mapping 
between inputs and outputs with-
out human intervention. 

More precisely, the component 
of prediction tasks that can be auto-
mated easily is the one that does 
not involve any expert knowledge. 
Prediction tasks require expert 
knowledge to specify the scien-
tific question—what to input and 
what outputs—and to identify/ 

generate relevant data sources.20 
(The extent of expert knowledge 
varies with different predic-
tion tasks.21) However, no expert 
knowledge is required for predic-
tion after candidate inputs and 
the outputs are specified and mea-
sured in the population of interest. 
At this point, a machine learn-
ing algorithm can take over the 
data analysis to deliver a mapping 
and quantify its performance. The 
resulting mapping may be opaque, 
as in many deep learning applica-
tions, but its ability to map the 
inputs to the outputs with a known 
accuracy in the studied population 
is not in question.

The role of expert knowledge 
is the key difference between pre-
diction and causal inference tasks. 
Causal inference tasks require 
expert knowledge not only to 
specify the question (the causal 
effect of what treatment on what 
outcome) and identify/generate 
relevant data sources, but also to 
describe the causal structure of 
the system under study. Causal 
knowledge, usually in the form 
of unverifiable assumptions,22,23 is 
necessary to guide the data analysis 
and to provide a justification for 
endowing the resulting numerical 
estimates with a causal interpre-
tation. In other words, the valid-
ity of causal inferences depends 
on structural knowledge, which 
is usually incomplete, to supple-
ment the information in the data. 
As a consequence, no algorithm 

16Gulshan, V., Peng, L., Coram, M., et al. 2016. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. 
JAMA 316(22):2,402–10.
17Paparrizos, J., White, R.W., and Horvitz, E. 2016. Screening for Pancreatic Adenocarcinoma Using Signals From Web Search Logs: Feasibility Study and Results. Journal 
of Oncological Practice 12(8):737–44.
18Rosen, G. 2017. Getting Our Community Help in Real Time. https://newsroom.fb.com/news/2017/11/getting-our-community-help-in-real-time/ (accessed April 26, 2018).
19Brynjolfsson, E., and Mitchell, T. 2017. What can machine learning do? Workforce implications. Science 358(6370):1,530–4.
20Conway, D. 2010. The Data Science Venn Diagram. Accessed October 9, 2018. http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram. 
21Beam, A.L., and Kohane I.S. 2018. Big Data and Machine Learning in Health Care. JAMA 319(13):1,317–8.
22Robins, J.M. 2001, Data, design, and background knowledge in etiologic inference. Epidemiology 11:313–20.
23Robins, J.M., and Greenland, S. 1986. The role of model selection in causal inference from nonexperimental data. American Journal of Epidemiology 123(3):392–402.
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can quantify the accuracy of causal 
inferences from observational data. 
The following simplified example 
helps fix ideas about the differ-
ent role of expert knowledge for 
prediction versus causal inference. 

Example
Suppose we want to use a large 
health records database to pre-
dict infant mortality (the output) 
using clinical and lifestyle factors 
collected during pregnancy (the 
inputs). We have just applied our 
expert knowledge to decide what 
the output and candidate inputs 
are, and to select a particular  
database in the population of  
interest. The only requirement 
is that the potential inputs must 
precede the outputs temporally, 
regardless of the causal structure 
linking them. At this point of the 
process, our expert knowledge 
will not be needed any more: An 
algorithm can provide a mapping 
between inputs and outputs at 
least as good as any mapping we 
could propose and, in many cases, 
astoundingly better.

Now suppose we want to use 
the same health records database 
to determine the causal effect of 
maternal smoking during preg-
nancy on the risk of infant mortal-
ity. A key problem is confounding: 
Pregnant women who do and do 
not smoke differ in many char-
acteristics (including alcohol  
consumption, diet, access to ade-
quate prenatal care) that affect the 
risk of infant mortality. Therefore, 
a causal analysis must identify 
and adjust for those confounding  
factors which, by definition, are 

associated with both maternal 
smoking and infant mortality. 

However, not all factors associ-
ated with maternal smoking and 
infant mortality are confounders 
that should be adjusted for. For 
example, birthweight is strongly 
associated with both maternal 
smoking and infant mortality, 
but adjustment for birthweight 
induces bias because birthweight 
is a risk factor that is itself causally 
affected by maternal smoking. In 
fact, adjustment for birthweight 
results in a bias often referred to 
as the “birthweight paradox”: Low 
birthweight babies from mothers 
who smoked during pregnancy 
have a lower mortality than those 
from mothers who did not smoke 
during pregnancy.24 

An algorithm devoid of causal 
expert knowledge will rely exclu-
sively on the associations found in 
the data and is therefore at risk of 
selecting features, like birthweight, 
that increase bias. The “birthweight 
paradox” is indeed an example of 
how the use of automatic adjust-
ment procedures may lead to  
an incorrect causal conclusion. In 
contrast, a human expert can read-
ily identify many variables that, 
like birthweight, should not be 
adjusted for because of their posi-
tion in the causal structure. 

A human expert also may iden-
tify features that should be adjusted 
for, even if they are not available in 
the data, and propose sensitivity 
analyses25 to assess the reliability 
of causal inferences in the absence 
of those features. In contrast, an  
algorithm that ignores the causal 
structure will not issue an alert 

about the need to adjust for fea-
tures that are not in the data.

Given the central role of 
(potentially fallible) expert causal  
knowledge in causal inference, it is 
not surprising that researchers look 
for procedures to alleviate the reli-
ance of causal inferences on causal 
knowledge. Randomization is the 
best such procedure. 

When a treatment is randomly 
assigned, we can unbiasedly esti-
mate the average causal effect 
of treatment assignment in the 
absence of detailed causal knowledge 
about the system under study. Ran-
domized experiments are central 
in many areas of science where 
relatively simple causal questions 
are asked.26 Randomized experi-
ments are also commonly used, 
often under the name A/B testing, 
to answer simple causal questions 
in commercial web applications. 
However, randomized designs 
are often infeasible, untimely, or 
unethical in the extremely com-
plex systems studied by health and  
social scientists.26

A failure to grasp the differ-
ent role of expert knowledge in 
prediction and causal inference 
is a common source of confusion 
in data science (the confusion is 
compounded by the fact that pre-
dictive analytic techniques, such 
as regression, can also be used for 
causal inference when combined 
with causal knowledge). 

Both prediction and causal 
inference require expert knowledge 
to formulate the scientific ques-
tion i, but only causal inference 
requires causal expert knowledge 
to answer the question. As a result, 

24Hernández-Díaz, S., Schisterman, E.F., and Hernán, M.A. 2006. The birth weight "paradox" uncovered? American Journal of Epidemiology 164(11):1,115–20.
25Robins, J.M., Rotnitzky, A., and Scharfstein, D.O. Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models. In Halloran 
E., and Berry D., eds. Statistical Methods in Epidemiology: The Environment and Clinical Trials. New York: Springer Verlag; 1999:1–92.
26Hernán, M.A. 2015. Invited commentary: Agent-based models for causal inference-reweighting data and theory in epidemiology. American Journal of Epidemiology 
2181(2):103–5.
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the accuracy of causal estimates 
cannot be assessed by using metrics 
computed from the data, even if the 
data were perfectly measured in  
the population of interest. 

Implications for 
Decision-making
A goal of data science is to help 
people make better decisions. For 
example, in health settings, the 
goal is to help decision-makers—
patients, clinicians, policy-makers, 
public health officers, regulators—
decide among several possible 
strategies. Frequently, the ability of 
data science to improve decision-
making is predicated on the basis 
of its success at prediction. 

However, the premise that 
predictive algorithms will lead to  
better decisions is questionable.  
An algorithm that excels at using 
data about patients with heart  
failure to predict who will die 
within the next five years is 
agnostic about how to reduce 
mortality. For example, a prior hos-
pitalization may be identified as a  
useful predictor of mortality,  
but nobody would suggest that we 
stop hospitalizing people to reduce  
mortality. Identifying patients 
with bad prognoses is very dif-
ferent from identifying the best 
course of action for preventing  
or treating a disease. Worse,  
predictive algorithms, when incor-
rectly used for causal inference, 
may lead to incorrect confounder 
adjustment and therefore conclude,  
for example, that maternal  
smoking appears to be beneficial 
for low birthweight babies.

Predictive algorithms inform 
us that decisions have to be made, 
but they cannot help us make the 

decisions. For example, a pre-
dictive algorithm that identifies 
patients with severe heart failure 
does not provide information 
about  whether heart transplant 
is the best treatment option. In  
contrast, causal analyses are 
designed to help us make deci-
sions because they tackle “what if ” 
questions. A causal analysis will, for 
instance, compare the benefit-risk 
profile of heart transplant versus 
medical treatment in patients with 
certain severity of heart failure.

Interestingly, the distinction 
between prediction and causal 
inference (counterfactual pre-
diction) becomes unnecessary 
for decision-making when the  
relevant expert knowledge can 
readily be encoded and incorpo-
rated into the algorithms. A purely 
predictive algorithm that learns to 
play Go can perfectly predict the 
counterfactual state of the game 
under different moves, and a pre-
dictive algorithm that learns to 
drive a car can accurately predict 
the counterfactual state of the car 
if, say, the brakes are not operated. 

Because these systems are gov-
erned by a set of known game 
rules (in the case of games like 
Go) or physical laws with some 
stochastic components (in the case 
of engineering applications like 
self-driving cars), an algorithm can 
eventually predict the behavior of 
the entire system under a hypotheti-
cal intervention.

Take the game of Go, which 
has been mastered by an algorithm 
“without human knowledge.”27 
When making a move, the algo-
rithm has access to all information 
that matters: game rules, current 
board position, and future out-
comes fully determined by the 

sequence of moves. Further, a rein-
forcement learning algorithm can  
collect an arbitrary amount of data 
by playing more games (conduct-
ing numerous experiments), which 
allows it to learn by trial and error. 
In this setting, a cleverly designed 
algorithm running on a power-
ful computer can spectacularly  
outperform humans—but this 
form of causal inference has, at 
this time in history, a restricted 
domain of applicability.

Many scientists work on com-
plex systems with partly known 
and nondeterministic governing 
laws (the “rules of the game”), 
with uncertainty about whether 
all necessary data are available, 
and for which learning by trial and 
error—or even  conducting a single  
experiment—is impossible. Even 
when the laws are known and the 
data available, the system may still 
be too chaotic for exact long-term 
prediction. For example, it was 
impossible to predict when and 
where the Chinese space station,28 
while in orbit at an altitude of 
about 250 km, would fall to Earth. 

Consider a causal question 
about the effect of different epo-
etin strategies on the mortality of 
patients with renal disease. We do 
not understand the causal struc-
ture by which molecular, cellular, 
individual, social, and environ-
mental factors regulate the effect 
of epoetin dose on mortality risk. 
As a result, it is currently impossi-
ble to construct a predictive model 
based on electronic health records 
to reproduce the behavior of the 
system under a hypothetical inter-
vention on an individual. Some 
widely publicized disappointments 
in causal applications of data sci-
ence, like “Watson for Oncology,” 

27Silver, D., Schrittwieser, J., and Simonyan, K., et al. 2017. Mastering the game of Go without human knowledge. Nature 550(7676):354–9.
28The Data Team. 2018. An out-of-control Chinese space station will soon fall to Earth. The Economist March 19, 2018.
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have arguably resulted from trying 
to predict a complex system that 
is still poorly understood and for 
which a sound model to combine 
expert causal knowledge with the 
available data is lacking.29

The striking contrast between 
the cautious attitude of most 
traditional data scientists (statisti-
cians, epidemiologists, economists, 
political scientists…) and the “can 
do” attitude of many computer 
scientists, informaticians, and  
others seems to be, to a large extent, 
the consequence of the different 
complexity of the causal questions 

historically tackled by each of 
these groups. Epidemiologists and 
other data scientists working with 
extremely complex systems tend to 
focus on the relatively modest goal 
of designing observational analyses 
to answer narrow causal questions 
about the average causal effect  
of a variable (such as epoetin treat-
ment), rather than try to explain 
the causal structure of the entire 
system or identify globally optimal 
decision-making strategies. 

On the other hand, newcomers 
to data science have often focused 
on systems governed by known 

laws (like board games or self-
driving cars), so it is not surprising 
that they have deemphasized the 
distinction between prediction and 
causal inference. Bringing this dis-
tinction to the forefront is, however, 
urgent as an increasing number of 
data scientists address the causal 
questions traditionally asked by 
health and social scientists. Sophis-
ticated prediction algorithms may 
suffice to develop unbeatable Go 
software and, eventually, safe  
self-driving vehicles, but causal 
inferences in complex systems (say, 
the effects of clinical strategies to 

 Data Science Task
Description Prediction Causal inference

Example of 
scientific question

How can women aged 
60–80 years with stroke 
history be partitioned in 
classes defined by their 
characteristics?

What is the probability 
of having a stroke next 
year for women with cer-
tain characteristics? 

Will starting a statin 
reduce, on average, the 
risk of stroke in women 
with certain characteris-
tics?

Data • Eligibility criteria
• Features (symptoms, 
clinical parameters …)

• Eligibility criteria
• Output (diagnosis of 
stroke over the next year)
• Inputs (age, blood 
pressure, history of 
stroke, diabetes at  
baseline)

• Eligibility criteria
• Outcome (diagnosis of 
stroke over the next year)
• Treatment (initiation of 
statins at baseline)
• Confounders
• Effect modifiers 
(optional)

Examples of  
analytics

Cluster analysis
…

Regression
Decision trees
Random forests
Support vector machines
Neural networks
…

Regression
Matching
Inverse probability 
weighting
G-formula
G-estimation
Instrumental variable  
estimation
…

Table 1—Examples of Tasks Conducted by  
Data Scientists Working with Electronic Health Records

29Ross, C., and Swetlitz, I. 2017. IBM pitched its Watson supercomputer as a revolution in cancer care. It’s nowhere close. STAT. https://www.statnews.com/2017/09/05/
watson-ibm-cancer/.
30Pearl, J. 2018. Theoretical Impediments to Machine Learning With Seven Sparks from the Causal Revolution. Technical Report R-475 (http://ftp.cs.ucla.edu/pub/stat_ser/
r475.pdf. Accessed April 26, 2018.
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treat a chronic disease) need to rely 
on data analysis methods equipped 
with causal knowledge.30 

Processes and 
Implications for 
Teaching
The training of data scientists tends 
to emphasize mastering tools for 
data management and data analy-
sis. While learning to use these 
tools will continue to play a cen-
tral role, it is important that the 
technical training of data scien-
tists makes it clear that the tools  
are at the service of distinct scien-
tific tasks—description, prediction, 
and causal inference.

A tra ining program in 
data science can, therefore, be 
organized explicitly in three  
components, each devoted to 
one of the three tasks of data 
science. Each component would 
describe how to articulate scientific  
questions, data requirements, 
threats to validity, data analy-
sis techniques, and the role of 
expert knowledge (separately for 
description, prediction, and causal  
nference). This is the approach 
that we adopted to develop the 
curriculum of the Clinical Data 
Science core at the Harvard Medi-
cal School, which three cohorts 
of clinical investigators have  
now learned.

Our students first learn to dif-
ferentiate between the three tasks 
of data science, then how to gener-
ate and analyze data for each task, 
as well as the differences between 
tasks. They learn that description 
and prediction may be affected  
by selection and measurement 
biases, but that only causal infer-
ence is affected by confound-
ing. After learning predictive  

algorithms, teams of students com-
pete against each other in a machine 
learning competition to develop the  
best predictive model (in an 
application of the Common Task 
Framework2). 

By contrast, after learning 
causal inference techniques, stu-
dents understand that a similar 
competition is not possible because 
their causal estimates cannot be 
ranked automatically. Teams with 
different subject-matter knowl-
edge may produce different causal 
estimates, and there often is no 
objective way to determine which 
one is closest to the truth using the 
existing data.31

Then students learn to ask 
causal questions in terms of a 
contrast of interventions con-
ducted over a fixed time period 
as would be specified in the pro-
tocol of a (possibly hypothetical) 
experiment, which is the target  
of inference. 

For example, to compare the 
mortality under various epoetin 
dosing strategies in patients with 
renal failure, students use subject-
matter knowledge to 1) outline 
the design of the hypothetical ran-
domized experiment that would 
estimate the causal effect of inter-
est—the target trial, 2) identify 
an observational database with 
sufficient information to approx-
imately emulate the target trial, 
and 3) emulate the target trial and 
therefore estimate the causal effect 
of interest using the observational 
database. We discuss why causal 
questions that cannot be trans-
lated into target experiments are 
not sufficiently well-defined,31 and 
why the accuracy of causal answers  
cannot be quantified using obser-
vational data. In parallel, the  
students also learn computer  

coding and the basics of statistical 
inference to deal with the uncer-
tainty inherent to any data analyses 
involving description, prediction, 
or causal inference.

A data science curriculum 
along the three dimensions of 
description, prediction, and causal  
inference facilitates interdisciplin-
ary integration. Learning from data 
requires paying attention to the 
different emphases, questions, and 
analytic methods developed over 
several decades in statistics, epide-
miology, econometrics, computer 
science, and others. Data scientists 
without subject-matter knowledge 
cannot conduct causal analyses in 
isolation: They don’t know how to 
articulate the questions (what the 
target experiment is) and they don’t 
know how to answer them (how 
to emulate the target experiment).

Conclusion
Data science is a component of 
many sciences, including the health 
and social ones. Therefore, the 
tasks of data science are the tasks 
of those sciences—description,  
prediction, causal inference. A 
sometimes-overlooked point 
is that a successful data science 
requires not only good data and 
algorithms, but also domain knowl-
edge (including causal knowledge) 
from its parent sciences.

The current rebirth of data sci-
ence is an opportunity to rethink 
data analysis free of the historical 
constraints imposed by traditional 
statistics, which have left scien-
tists ill-equipped to handle causal  
questions. While the clout of sta-
tistics in scientific training and  
publishing impeded the introduc-
tion of a unified formal framework  
for causal inference in data  

31Hernán, MA. 2019 (in press). Spherical cows in a vacuum: Data analysis competitions for causal inference. Statistical Science.
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analysis, the coining of the term 
“data science” and the recent influx 
of  “data scientists” interested in causal  
analyses provides a once-in-a- 
generation chance of integrating  
all scientific questions, including 
causal ones, in a principled data 
analysis framework. An inte-
grated data science curriculum can  
present a coherent conceptual 
framework that fosters understand-
ing and collaboration between data 
analysts and domain experts. 

On the other hand, if the defi-
nitions of data science currently 
discussed in mainstream statistics 
take hold, causal inference from 
observational data will be once 
more marginalized, leaving health 
and social scientists on their own. 
The American Statistical Asso-
ciation statement on “The Role of  
Statistics in Data Science” (August 
8, 2015) makes no reference to 
causal inference. A recent assess-
ment of data science and statistics2 
did not include the word “causal” 
(except when mentioning the 
title of the course “Experiments 
and Causal Inference”). Heavily 
influenced by statisticians, many 
medical editors actively suppress 
the term “causal” from their pub-
lications.33 

A data science that embraces 
causal inference must (1) develop 
methods for the integration  
of sophisticated analytics with 
expert causal expertise, and  
(2) acknowledge that, unlike for 
prediction, the assessment of the 

validity of causal inferences can-
not be exclusively data-driven 
because the validity of causal 
inferences also depends on the 
adequacy of expert causal knowl-
edge. Causal directed acyclic 
graphs34,35 may play an impor-
tant role in the development of  
analytic methods that integrate 
learning algorithms and subject-
matter knowledge. These graphs 
can be used to represent different 
sets of causal structures that are 
compatible with existing causal 
knowledge and thus to explore the 
impact of causal uncertainty on the 
effect estimates. 

Large amounts of data could 
make expert knowledge irrelevant 
for prediction and for relatively 
simple causal inferences involv-
ing games and some engineering  
applications, but expert causal 
knowledge is necessary to for-
mulate and answer causal  
questions in more-complex systems. 
Affirming causal inference as a   
legitimate scientific pursuit is the 
first step in transforming data  
science into a reliable tool to guide  
decision-making.

Finally, the distinction between 
prediction and causal inference is 
also crucial to defining artificial 
intelligence (AI). Some data scien-
tists argue that “the essence of 
intelligence is the ability to pre-
dict,” and therefore that good pre-
dictive algorithms are a form of AI. 
From this point of view, large 
chunks of data science can be 

rebranded as AI (and that is exactly 
what the tech industry is doing). 
However, mapping observed inputs 
to observed outputs barely qualifies 
as intelligence. Rather, a hallmark 
of intelligence is the ability to pre-
dict counterfactually how the world 
would change under different 
actions by integrating expert 
knowledge and mapping algo-
rithms. No AI will be worthy of the 
name without causal inference.  
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